
Wpay Digital Payments
Wpay Digital Payments Developer Hub. Everything you need to know to create a
seamless commerce experience. Accept web and mobile payments, defend against
fraud, and monitor your transactions in real time.

Version 1.0.7 - Generated on August 9th, 2024

1

Authentication Swagger

Wpay AP Swagger

ONLY FOR USE BY CUSTOMERS WHO CONNECTED TO WPAY PRIOR TO 2020

https://app.swaggerhub.com/apis/Wpay/wow-idm_server_access_token_api/1.0.1
https://app.swaggerhub.com/apis/Wpay/wpay-ap_is/1.0.7

Table of Contents
Getting Started

Getting Access

Authentication
Payment Methods Supported

Cards

Gift Cards

Apple Pay

Google Pay

PayPal

Wallets and Instruments

Integration Options

Payments

Overview
Tokenizing a Payment Instrument

Tokenizing a Card

Tokenizing a Gift Card

Tokenizing PayPal

Tokenizing Apple Pay

Tokenizing Google Pay

Making a Payment

Complete a Pre-authorised Payment

Void a Pre-authorised Payment

Refund a Payment

Customer Wallet Management

Overview

Retrieve a Customers Wallet

Manage a Customers Wallet

Gift Card Balance Check

Recurring Payments

Overview

Payment Agreements

Charging Payment Agreements

Ancillary Services

Merchant Profile

Transaction History

Pagination

SDKs

Overview
Frames

Integrate Frames

Frames Customisation and Styling

Testing

Test Card Numbers

2

Error Scenario Test Cards

Risk Management

PCI Compliance
Fraud Detection

Cybersource

Sift

3D Secure (3DS)

3DS Payment Integration

3DS Card Capture Integration

PayPal Seller Protection

Support

Glossary

FAQs

Error Codes

3

Getting Started

4

Getting Access

Authentication

Contact us to find out more information on how to get set up as a Merchant with Wpay

When you sign up for an account we will provide you with two sets of API keys one for the test environment (also

known as the Sandbox), and one for the live system.

You authenticate with our APIs by providing your API Key in the request X-Api-Key header.

When you sign up with us, we will ask you to provide us the list of IP addresses that are authorised to make an API

call. This ensures even if your API key is found or stolen, only your servers will be able to use it.

Get Setup as a Merchant

API Keys

📘 API Keys & IP Whitelist Restrictions

Your API key is used throughout our system to identify you as the merchant. Your egress IPs will be

whitelisted to restrict sensitive services which should only be processed from your server-side

applications. These will be configured against your merchant account during your merchant onboarding

process.

IP Whitelisting

Wpay's SDK APIs use Bearer Authentication to authenticate requests.

You will need to provide your API key (X-Api-Key) as a part of the header along with a bearer token (Authorization)

for all API requests (unless otherwise stated).

Once the backend has the token it can be passed to the front end for use with the client-side APIs calls as part of the

header.

APIs that require authentication need a signed JSON Web Token (JWT). This authentication token (prefixed with

bearer) needs to be provided in the authorization HTTP header.

🚧 Restricted API

This API is IP restricted to allow unauthenticated server-side calls.

Your servers will need to be on an allow list to allow refunds.

Token Generation

5

https://www.wpay.com.au/content/mep/au/en/get-in-touch.html
https://swagger.io/docs/specification/authentication/bearer-authentication/

Example of how to generate a bearer token for your authentication calls via our IDM API :

cURL JavaScript

Where:

yourAPIKey contains your merchant API key which will be provided to you when joining Wpay

access_token_exp is the time in seconds in which the access token will expire. This will default to 1 hour should

no value be provided.

shopperId is your unique customer identifier for your customer within your system. This is required to be unique

for both registered and guest users. This should never be an email address or any other value that may change

over time for the user.

isGuest is an optional boolean flag that can be set based on your user type. If the user is a registered user in

your system set this to false or if they are a guest user set this to true . This will default to false.

Guest users are your customers who have not registered their details with your store and therefore they

cannot permanently save instruments to their customer wallet for later use.

The {{environment}} variable can be set to the below to access the required environment for the authentication API.

JSON

Where:

curl --location \
--request POST 'https://{{environment}}.mobile-api.woolworths.com.au/wow/v1/idm/servers/token?access_toke
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourAPIKey}}' \
--data-raw '{
"shopperId": "70538197-f696-4f70-a025-93b03d48a03390",
"username": "jondoe@email.com",
"isGuest": false
}
'

Authentication Environments

Environment Variable

Test: test

User Acceptance Testing uat

Token Response

{
 "accessToken": "9ZhistH7jGgcao8QPH6ApAIsy2NW",
 "accessTokenExpiresIn": 3599,
 "refreshToken": "87eB6Pmp0x9I8x54NLtIYQo9nQ15FxoS",
 "refreshTokenExpiresIn": 2591999,
 "tokensIssuedAt": 1629782182152,
 "isGuestToken": false,
 "idmStatusOK": false
}

6

Payment Methods Supported

Cards

accessToken is the bearer token value to be used in subsequent endpoint calls

accessTokenExpiresIn is the time in seconds in which the access token will expire

tokensIssuedAt is an epoch time in milliseconds GMT: Tuesday, 24 August 2021 05:16:22.152

reference Online epoch converter

Wpay currently supports multiple payment methods which are represented by the payment instrument type which

you would like your customers to use when making payments.

These payment methods below can be used for a single payment or can be vaulted and saved to your customer's

wallet for later use.

Wpay support credit and debit cards across the major providers namely; Mastercard, Visa, American Express, JCB

and Diners Club allowing your customer to pay with and store their cards in their wallet for future use.

Gift cards within the majority of gift card programs are supported with Wpay allowing your customer to pay with and

store their gift cards in their wallet for future use.

PayPal payments are supported through Wpay. Your customers can also store their PayPal account within their wallet

allowing for easy one-click payments for future use using the Vault integration pattern. Alternatively, they can use the

Checkout integration pattern for quick one time payments for both PayPal and PayPal Pay in 4.

Apple Pay is a digital wallet and payment service provided by Apple and is the most secure way to pay in your website

or app. Apple Pay allows your customers to make payments in iOS apps and on the web using Safari with the Apple

Pay button and complete your purchase without the need to add to a cart or fill out a form.

Google Pay is a digital wallet and payment service provided by Google and is the convenient, efficient and secure way

for customers to pay in mobile apps and on websites using their Google Account.

Supported Instrument Types

Cards

Gift Cards

PayPal

📘 PayPal Integration

To integrate your PayPal payments with Wpay, we require you to provide us with your PayPal account

details so we can link them to your account.

Apple Pay

Google Pay

7

https://www.epochconverter.com/

Gift Cards

Card payments allow your customers to easily purchase goods or services from your business using credit and debit

cards without the need for cash or cheques using one of the major providers such as; Mastercard, Visa, American

Express, JCB and Diners Club. When a customer makes a purchase from your website the Acquirer will seek

authorisation for the transaction from the customer's bank. When the transaction is approved the customer

completes the purchase and a payment receipt is issued. The proceeds of the sale are then deposited to your

account as part of the daily settlement process.

Cards High Level Payment Process

Your Wpay account management representative will be able to support you through the steps of setting up credit and

debit card acceptance as part of your integration process.

To tokenize a Card as an instrument using the Wpay Platform please follow Tokenizing a Card.

To make a Card payment using the Wpay Platform please follow Making a Payment.

The card acceptance marks of these schemes can be found in the following location:

American Express

Diners Club

JCB

Mastercard

Visa

Card Acceptance Setup

Tokenizing a Card

Making a Card Payment

Card Acceptance Marks

Gift Cards have been a popular payment method for a long time seeing how they drive brand awareness and earn

customer loyalty while encouraging repeat purchases.

As the Program Manager for all Woolworths brand gift cards, Wpay has the capability to support your business in the

sale and redemption of Woolworths gift cards.

8

https://www.americanexpress.com/en-us/business/merchant/supplies/?
https://www.dinersclub.com/about-us/press/media-kit
https://www.jcb.co.jp/bdmanual/en/basicDesignElements/jcbEmblem/index01download01.html
https://brand.mastercard.com/brandcenter/mastercard-brand-mark/downloads.html
https://www.merchantsignage.visa.com/brand_guidelines

Apple Pay

Wpay has a wide range of physical and digital gift card products that are offered on the Woolworths Gift Card Website

In addition, we work with a variety of Gifting Partners who act as resellers of Woolworths brand Gift cards. If you are

interested in becoming a Gifting Partner, please follow us on Becoming a Gifting Partner

Beyond the sale of gift cards, Wpay also provides APIs that will support your platform in processing gift card

payments. Even if your website does not sell gift cards, you can allow your customers to pay for their purchase using

a gift card either entirely or partially.

Given your customer already has access to their Woolworths gift card, Wpay's APIs will allow them to

To tokenize a Gift Card as an instrument using the Wpay Platform please follow Tokenizing a Gift Card.

To make a Gift Card payment using the Wpay Platform please follow Making a Payment.

To check Gift Card balance using the Wpay Platform please follow Gift Card Balance Check.

Add the Gift Card to their digital wallet

Make a Gift Card Payment

Check their Gift Card Balance

Apple Pay is a digital wallet and payment service provided by Apple Inc and it provides an easy and secure way to pay

in iOS apps, watchOS apps, and websites on Safari. Apple Pay allows your customers with compatible devices to

make payments and complete purchase without the need to add to a cart or fill out a form. Payments made using

Apple Pay will benefit from full liability shift for supported card schemes including; Visa, MasterCard and AMEX.

When your customer selects Apple Pay, they are presented with a pre-populated Payment Sheet where they can view

the order, choose a card and confirm their shipping and contact details. The final step is payment authorisation

through Face ID or Touch ID authentication to confirm the purchase. [1]

To start accepting Apple Pay payments via Web and Mobile Apps please follow the instructions below:

Apple Pay on the Web: You don't need to create your own Apple Pay certificate for web integration because you

will use Wpay Apple Pay Certificate. Your Wpay account management representative will be able to support you

📘 Supported Apple Pay Experiences

As a merchant you can choose to support any of the patterns below. Depending on which of the below

patterns your business wishes to support, the setup steps will vary.

Apple Pay in iOS apps

Apple Pay on the Web via Safari

Apple Pay on both iOS apps and on the Web via Safari.

Apple Pay Setup

9

https://giftcards.woolworths.com.au/
https://developerhub.wpay.com.au/giftingservices/docs/becoming-a-gifting-partner
https://support.apple.com/en-au/HT208531
https://developer.apple.com/documentation/passkit/apple_pay
https://developer.apple.com/documentation/apple_pay_on_the_web

through the integration process.

Apple Pay in App: You will need to enable Apple Pay with your own certificates and share your certificates with

Wpay to configure against your merchant profile. These certificates will be generated from your Apple Developer

Account which can be created by following the instructions here Before You Enrol - Apple Developer Program.

Please share this with your account management representative who can support you through the integration

process.

Apple Pay Web: Wpay paymentsession API must first be called from the client side so that Wpay can correctly

validate the merchant domain and return an opaque Apple Pay merchant session object. The Apple Pay session

object can be used to encrypt payment data. Upon successful call of Paymentsession API, you may then present a

Payment Sheet to the user to review the purchase and authorise the payment.

cURL JavaScript Swift

Where:

Origin header will be automatically passed on by customer's browser

validationUrl is validation URLs provided by Apple when you set up your server (see Requesting An Apple Pay

Payment Session for more detail)

A sample of merchant session object can be seen below. You may pass this whole object to the completion method,

completeMerchantValidation to enable the user to authorize a transaction.

JSON

Starting a Session with Apple for Apple Pay

// Dev to check
curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/applepay/paymentsession' \
--header 'X-Api-Key: {{yourAPIKey}}' \
--header 'Content-Type: application/json' \
--header 'authorization: Bearer {{yourBearerToken}}' \
--header 'Origin: https://{{yourDomain}}' \
--data-raw '{
 "validationUrl": "https://apple-pay-gateway-cert.apple.com/paymentservices/paymentSession",
 "displayName": "{{yourStoreName}}"
}'

Apple Pay Merchant Session Object

{
 "epochTimestamp": 1658987403707,
 "expiresAt": 1658991003707,
 "merchantSessionIdentifier": "SSHDC1221C404******",
 "nonce": "eed0adec",
 "merchantIdentifier": "4FCE55AEEED3DACF3FE85****************",
 "domainName": "localhost:8080",
 "displayName": "My Store",
 "signature": "308006092a864886***********************************",
 "operationalAnalyticsIdentifier": "My Store:4FCE55AEEED3DACF3************",
 "retries": 0,
 "pspId": "B17C76FBD980CE281***********************"
}

10

https://developer.apple.com/programs/enroll/
https://developer.apple.com/documentation/apple_pay_on_the_web/apple_pay_js_api/requesting_an_apple_pay_payment_session
https://developer.apple.com/documentation/apple_pay_on_the_web/apple_pay_js_api/requesting_an_apple_pay_payment_session
https://developer.apple.com/documentation/apple_pay_on_the_web/applepaysession/1778015-completemerchantvalidation

Google Pay

Apple Pay in App: you can validate your merchant domain by calling Apple validation URL directly (see Requesting An

Apple Pay Payment Session for more detail). It will return an opaque Apple Pay session object that you can use to

encrypt the payment data. Since Wpay already stores your Apple Pay Certificates against your profile in our secure

environment, we will be able to decrypt the payment data on our end and [provide you with a payment token]

(doc:apple-pay#tokenizing-apple-pay) that you can use to make payments or store in your wallet.

To tokenize an Apple Pay instrument using the Wpay platform please follow Tokenizing Apple Pay.

To make an Apple Pay payment using the Wpay platform please follow Making a Payment.

�. Apple Pay - Marketing Guidelines

�. Apple Pay Programming Guide

�. Preparing Merchant Domains for Verification

�. Register Merchant

�. Apple Pay Interactive Demo

�. Registering with Apple Pay and Applying to Use the API

�. Requesting An Apple Pay Payment Session

Tokenizing Apple Pay

Making an Apple Pay Payment

🚧 Testing Apple Pay Integration

Testing for Apple Pay on web requires a sandbox account. The steps to create a sandbox accounts and add

dummy cards is documented here at Apple Pay - Sandbox Testing - Apple Developer. Once your test

integration is complete you can test your setup using the Apple Pay on the Web Demo .

References

Google Pay™ is a payment service provided by Google and is a convenient, efficient and secure way for customers to

pay in mobile apps and on websites using their Google Account. Google Pay gives you access to hundreds of millions

of cards saved to Google Accounts worldwide.

When your customer chooses Google Pay, a Payment Sheet will be displayed, which lists the goods or services,

payment methods saved to their Google Account, plus other optional fields such as shipping address and additional

information. The customer can then quickly review the purchase, select a payment method, add an optional shipping

address and confirm the payment. See the videos in Start using Google Pay today for more detail.

11

https://developer.apple.com/documentation/apple_pay_on_the_web/apple_pay_js_api/requesting_an_apple_pay_payment_session
https://developer.apple.com/documentation/apple_pay_on_the_web/apple_pay_js_api/requesting_an_apple_pay_payment_session
https://developer.apple.com/apple-pay/marketing/
https://developer.apple.com/library/archive/ApplePay_Guide/
https://developer.apple.com/documentation/applepaywebmerchantregistrationapi/preparing_merchant_domains_for_verification
https://developer.apple.com/documentation/applepaywebmerchantregistrationapi/register_merchant
https://applepaydemo.apple.com/
https://developer.apple.com/documentation/applepaywebmerchantregistrationapi/registering_with_apple_pay_and_applying_to_use_the_api
https://developer.apple.com/documentation/apple_pay_on_the_web/apple_pay_js_api/requesting_an_apple_pay_payment_session
https://developer.apple.com/apple-pay/sandbox-testing/
https://applepaydemo.apple.com/
https://developers.google.com/pay
https://pay.google.com/about/learn/#modal_video_pay-online

To start accepting Google Pay payments, you will need to be registered with Wpay as one of our merchants. Once you

are registered, we will provide you with two values - gateway and gatewayMerchantId for you to request a payment

token from Google Pay. Set wpayaus as your gateway and use merchantId found in your Merchant Profile for

gatewayMerchantId . You may then pass the payment token information to Wpay for us to process the payment.

Please get in touch with your Account Management representative to get your merchant profile setup.

To tokenize a Google Pay instrument using the Wpay Platform please follow Tokenizing Google Pay.

To make a Google Pay payment using the Wpay Platform please follow Making a Payment.

If you would like to enable 3DS for PAN_ONLY credentials returned via Google Pay API, please refer to the following

documentation for more information:

3D Secure (3DS)

3DS Payment Integration

3DS Card Capture Integration

📘 Supported Google Pay Experiences

�. Google Pay payments via Android Mobile App.

�. Google Pay payments on iOS devices via Chrome Browser

�. Google Pay on PC via supported browsers.

Google Pay Setup

Tokenizing Google Pay

Making a Google Pay Payment

📘 Supported Google Pay Configuration

Wpay supports both PAN_ONLY and CRYPTOGRAM_3DS authentication methods:

PAN_ONLY - the card is stored on file within your customer's Google account and not bound to an

Android device.

CRYPTOGRAM_3DS - the payment credentials is bound to an Android device.

Supported payment cards can be found here.

If you require a billing address to be submitted for address verification purposes, set

billingAddressRequired to true and billingAddressParameters according to your need. For more

information, please see Billing Address Parameter.

Enabling 3D Secure (3DS) for Google Pay

12

https://developers.google.com/pay/api/web/reference/request-objects#BillingAddressParameters

PayPal

�. Google Pay Overview

�. Google Pay Android developer documentation

�. Google Pay Android integration checklist

�. Google Pay Android brand guidelines

�. Google Pay Web developer documentation

�. [Google Pay Web brand guidelines] (https://developers.google.com/pay/api/web/guides/brand-guidelines)

�. [Google Pay Web Integration checklist] (https://developers.google.com/pay/api/web/guides/test-and-

deploy/integration-checklist)

�. Google Pay UX best practices - Android

�. Google Pay UX best practices - Web

🚧 Testing Google Pay Integration

Google provides a test environments for merchants to test Google Pay integration. The test environment

does not return live chargeable tokens in the PaymentData response, but it allows developers to test

elements of the purchase such as; confirmation pages, receipts, billing, shipping, and so on. Google also

provide a set of sample cards and sample payment tokens that can be used during testing. For more

information, please see "Integration checklist".

References

PayPal allows your customers with one click, to get directly from the product page or the shopping cart to the PayPal

payment page without any detours. PayPal remembers their financial and shipping details, so customers donʼt have to

re-enter them on your site.

PayPal Pay Later offers for Australian customers include PayPal Pay in 4 , which is a short-term instalment product

that provides eligible PayPal customers the option to split purchases into 4 interest-free payments for transactions

between $30 AUD - $1,500 AUD. The first payment is due at the time of the transaction with subsequent payments

due every two weeks. [1]

The Wpay implementation of PayPal Pay in 4 uses the PayPal Checkout method which utilizes the Braintree SDK.

Checkout with PayPal is a one-time payment checkout experience that gives you more control over the entire

checkout process. It offers a streamlined checkout flow that keeps customers local to your website during the

payment authorization process. Unlike the PayPal Vault method, Checkout with PayPal does not provide the ability to

store a customerʼs PayPal account in the Vault. [5]

PayPal

PayPal Pay in 4

13

https://developers.google.com/pay
https://developers.google.com/pay/api/android/overview
https://developers.google.com/pay/api/android/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/android/guides/brand-guidelines
https://developers.google.com/pay/api/web/
https://developers.google.com/pay/api/web/guides/brand-guidelines
https://developers.google.com/pay/api/web/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/web/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/android/guides/ux-best-practices
https://developers.google.com/pay/api/web/guides/ux-best-practices
https://developers.google.com/pay/api/android/guides/resources/test-card-suite
https://developers.google.com/pay/api/android/guides/resources/sample-tokens
https://developers.google.com/pay/api/android/guides/test-and-deploy/integration-checklist
https://www.paypal.com/au/webapps/mpp/paypal-payin4
https://developer.paypal.com/braintree/docs/guides/paypal/checkout-with-paypal
https://developer.paypal.com/braintree/docs/guides/paypal/vault

Below are the current PayPal integration methods further detail about each integration method can be found on the

Braintree Website.

As a Merchant you will first need to setup your PayPal Developer Account which can be used for both Sandbox testing

and Production. Follow the PayPal instructions to ensure you sign up with the correct account type as either Personal

or Business.

As a Merchant you will also need to setup your Braintree Developer Account which can be used for both Sandbox

testing and Production. In order, to link your PayPal and Braintree Accounts together you should follow these

instructions from Braintree. As part of the setup process you will need to enter the following details:

Sandbox Account Email

🚧 Minimum Braintree SDK version

Braintree SDK JavaScript v3 3.69.0 or higher is required on the client side.

Supported Integration Patterns

Payment Integration Method Wpay Support Payment Types Save for Future Use

Vault Flow Yes PayPal Yes

Checkout Flow Yes PayPal
PayPal Pay in 4 No

Checkout Flow with Vault Flow Not currently PayPal
PayPal Pay in 4 Yes

❗ Number of Integration Methods

Please note you can only use one integration method at a time and they can't be used simultaneously.

Therefore, its important to consider which integration method best supports your current and future use

cases for PayPal.

PayPal Account Setup

📘 PayPal Account Sign Up
Sign Up: Create a PayPal Account - PayPal Australia

Note: If you setup the PayPal Developer Account as a Business type there are a few things to consider:

Who will be the Primary Account User this individual is essentially the owner of the account.

Roles and Permissions you may want to have for different groups of users in your business who require

access to the account to perform their role.

Braintree Account Setup

14

https://developer.paypal.com/braintree/docs/guides/paypal/overview
https://developer.paypal.com/braintree/articles/guides/payment-methods/paypal/setup-guide
https://developer.paypal.com/braintree/docs/guides/paypal/vault
https://developer.paypal.com/braintree/docs/guides/paypal/checkout-with-paypal
https://developer.paypal.com/braintree/docs/guides/paypal/checkout-with-vault
https://www.paypal.com/au/webapps/mpp/account-selection
https://www.paypal.com/au/smarthelp/article/how-do-i-add-users-to-my-paypal-account-faq1605

Client ID

Secret

This information can be found in the My Apps & Credentials menu item inside your PayPal Developer Account.

Obtaining the current PayPal client token may be retrieved from your Merchant Profile. The PayPal client token is

located under the payPal.clientToken path.

Once the PayPal and Braintree Sandboxes have been linked together and PayPal enabled as a Payment Processing

Option in the Braintree control panel it is possible to test the integration using the PayPal Buttons Integration Tool.

This will allow you to test your integration is setup correctly by observing if the PayPal Buttons render in the tool in

the sandbox environment. A prerequisite to the PayPal buttons appearing is a Client Token must be generated and

inserted into the code as shown in the extract below.

HTML

The PayPal Checkout method allows you to render either the single PayPal or also a Pay in 4 button depending on

your preference as documented here by PayPal. For more detailed information regarding styling of PayPal buttons

please refer to this guide on the PayPal Developer Portal.

The Pay in 4 button provides direct access to Pay Later offers in PayPal Checkout. Specify the fundingSource:

paypal.FUNDING.PAYLATER option when rendering the Pay Later button, and additionally pass enable-funding :

paylater as a query param in the PayPal SDK. Passing dataAttributes.amount when calling loadPayPalSDK is

required for the Pay in 4 button to render. [2] Itʼs also possible to render multiple standalone payment buttons for

supported payment method. [3]

PayPal Client Token

🚧 Client Token Validity

The client token is only valid for 24 hours before it expires and new one is required to be generated.

PayPal Buttons Integration Tool

<!-- Load the Braintree components -->
 <script src="https://js.braintreegateway.com/web/3.85.2/js/client.min.js"></script>
 <script src="https://js.braintreegateway.com/web/3.85.2/js/paypal-checkout.min.js"></script>
 <script>
 // Client Token
 var ClientToken =
 "eyJ2ZXJzaW9uIjoyLCJhdXRob3JpemF0aW9uRmluZ2VycHJpbnQiOiJleUowZVhBaU9pSktWMVFpTENKaGJHY2lPaUpGVXpJ

PayPal Buttons

15

https://developer.paypal.com/developer/applications
https://developer.paypal.com/demo/checkout/#/pattern/client
https://developer.paypal.com/docs/checkout/pay-later/au/
https://developer.paypal.com/docs/checkout/standard/customize/buttons-style-guide/

JavaScript HTML

PayPal provides a dynamic messaging to let customers know they can buy now and pay later. With dynamic

messaging, PayPal will show them the right order for what theyʼre buying. You must show the Pay Later button if you

present Pay Later messaging.

Qualifying amount message example [1]

Non-qualifying amount or no amount message example [1]

To present this messaging, you must include the PayPal messaging component in JavaScript while loading PayPal

SDK, and also include a div on the HTML page where you want to render a message. [2]

paypalCheckoutInstance.loadPayPalSDK({
 components: 'buttons,messages'
 currency: 'AUD',
 'enable-funding': 'paylater',
 dataAttributes: {
 amount: '10.00'
 }
 // Other config options here
}).then(function () {
 var button = paypal.Buttons({
 fundingSource: paypal.FUNDING.PAYLATER,

 createOrder: function () {
 return paypalCheckoutInstance.createPayment({
 flow: 'checkout', // Required
 amount: '10.00', // Required
 currency: 'AUD' // Required
 });
 },
 onApprove: function (data, actions) {
 return paypalCheckoutInstance.tokenizePayment(data).then(function (payload) {
 // Submit `payload.nonce` to your server
 });
 },
 });
 if (!button.isEligible()) {
 // Skip rendering if not eligible
 return;
 }

 button.render('#pay-later-button');
});

Pay in 4 Messaging

16

Wallets and Instruments

JavaScript HTML

For more detailed information about the presentment of PayPal Pay in 4 messaging please refer to the documentation

on the PayPal Developer Portal here.

To tokenize a PayPal instrument using the Wpay Platform please follow Tokenizing a Payment Instrument.

To make a PayPal payment using the Wpay Platform please follow Making a Payment.

To use PayPal Seller Protection when making a payment please follow PayPal Seller Protection.

�. Pay Later Offers (AU)

�. Pay Later Offers

�. Standalone Payment Buttons

�. Braintree PayPal Guide

�. Checkout Method

paypalCheckoutInstance.loadPayPalSDK({
 components: 'buttons,messages'
 // Other config options here
}, function () {
 // set up PayPal buttons (see next section)
});

Tokenizing PayPal

Making a PayPal Payment

Using PayPal Seller Protection

References

The wallet allows you to securely store and manage customers' payment instruments in our vault. This will allow you

and your customer to reuse these stored instruments in future checkouts without the need to recapture all the

payment details again. Think of this as a real wallet but for the online world.

Wallets

17

https://developer.paypal.com/docs/checkout/pay-later/au/integrate/reference/#style-options
https://developer.paypal.com/docs/checkout/pay-later/au/
https://developer.paypal.com/braintree/docs/guides/paypal/pay-later-offers
https://developer.paypal.com/docs/checkout/standard/customize/standalone-buttons/
https://developer.paypal.com/braintree/docs/guides/paypal/overview
https://developer.paypal.com/braintree/docs/guides/paypal/checkout-with-paypal

Integration Options

Payment Instruments stored in the customer's wallet for your website can be retrieved using the customer's unique

identifier.

An instrument is a unique reference to a payment method that has been tokenized and stored in our vault, either as a

single-use or multi-use instrument. When tokenization is successful we securely store the payment information as a

payment instrument in our vault and each instrument is uniquely identified by an instrument ID and payment token.

These instruments can be single-use or can be saved to a customer's wallet and used multiple times.

An instrument token that is single-use will not be stored in the customer's wallet and cannot be used to make multiple

payments. An example of this would be the instruments generated for a guest user or where a customer has selected

not to save their payment details for future checkouts.

An instrument token that is multi-use is where the customer has selected to save their payment details so that they

can use them at a later stage without having to recapture all their payment details. We will store the payment token

against the wallet as an instrument which you will be able to retrieve along with some header level details of the

payment method when the customer comes back for a future checkout.

📘 Wallet Creation

We handle the complexity of setting up a new wallet each time a new customer saves a payment instrument

during checkout. We will re-use a customer's existing wallet if they have already saved one or more

payment instruments as part of their previous checkout.

Retrieving Instruments in the Wallet

Instruments

Single-use Instrument Tokens

Multi-use Instrument Tokens

📘 Instrument Types

An instrument includes all payment methods, e.g. debit card, credit card, gift card and PayPal.

With Wpay you can integrate with us via our easy to use SDK's and REST API's.

Our SDK's allow for easy integration, hosting and customisation of PCI compliant frames for credit card capture.

SDK's

18

https://developerhub.wpay.com.au/reference

Our API's allow you to interact with our payments and wallet management services and allow full control over your

integration.

For the full specification see our API reference

API's

19

https://developerhub.wpay.com.au/v1.0.7/docs/sdks
https://developerhub.wpay.com.au/v1.0.7/docs/sdks
https://developerhub.wpay.com.au/reference

Payments

20

Overview

Tokenizing a Payment Instrument

Once you've successfully set up your integration and have received your API key , you're able to start receiving and

tokenizing your customers' payment instruments. After this tokenization process, you're ready to create a payment.

To do this, you can use either our API's or our easy to integrate SDK's.

Tokenization or tokenizing a payment instrument is the process of taking sensitive payment information and

converting it into a payment token. This payment token can then be used for making payments and setting up

payment agreements through our payment services. Payment tokens are used for both single-use payments such as;

guest payments or the token can be vaulted and stored in the customers wallet and used multiple times for your

registered customers.

Once you have tokenized a payment instrument you can then use the payment token to send through a payment

request.

We use the payment token to retrieve the payment information from our secure vault and use this information to

process a payment with the relative issuer/provider.

Once a transaction is complete you will receive back a response with the outcome of the payment request and a

Payment Transaction ID and Payment Transaction Reference . These can be used for subsequent Refunds,

Voids or Completions.

How it works

Tokenization

Payments

This guide covers the high level process for tokenizing a payment instrument and provides detailed guides on

supported payment instruments which can be tokenized using the Wpay Platform.

�. The customer then enters their payment details directly on your checkout page.

�. Your customer's sensitive information is passed from your website and is processed by us. We return a payment

token (instrumentId) which is a unique representation of the card without any sensitive card information.

�. The instrumentId can be used in our payments services to make a payment or even set up a recurring payment.

How it works

21

Tokenizing a Card

Follow the guides below for detailed instructions on how to perform tokenization for different payments instruments

using the Wpay Platform.

�. Tokenizing a Card

�. Tokenizing a Gift Card

�. Tokenizing PayPal

�. Tokenizing Apple Pay

�. Tokenizing Google Pay

Tokenization Guides

To tokenize a card you are required to use our Frames SDK. This is due to the PCI compliance requirements around

capturing and handling sensitive card payment information. We currently do not support the tokenization of card

information via our standard API's, however, if you are an organization with strong PCI Compliance please Contact us

�. Embed the Wpay Frames on the checkout page of your website.

�. The customer then enters their payment details directly on your checkout page.

�. Your customer's sensitive information is passed from the frames and is processed by us. We return a payment

token (instrumentId) which is a unique representation of the card without any sensitive card information.

�. The instrumentId can be used in our payments services to make a payment or even set up a recurring payment.

Due to PCI compliance requirements, we require you to use our Frames in order to capture and tokenize credit card

information. To see more on tokenizing a credit card via our Frames please see our Frames SDK

High Level Flow

How it works

22

https://www.wpay.com.au/content/mep/au/en/get-in-touch.html

Tokenizing a Gift Card

To tokenize a gift card for a gift card program supported by your site, you can make use of our tokenize gift card

API's. Unlike our scheme card tokenization service which necessitates the use of our PCI compliant Frames SDK , for

gift cards you can host your own frames to capture the gift card number and pin .

�. Create and host frames on your site allowing your customers to capture a gift card number and pin for a

supported gift card program

�. Your customer's gift card information is processed by us and we return a payment token which is a unique

representation of the gift card without any sensitive information.

�. The payment token can be used in our payments services to make a payment

This method should be used to tokenize gift cards. The same API can be used for registered and guest customers.

cURL JavaScript Swift Kotlin

Where:

cardNumber and pinCode are the values for the gift card your customer wishes to tokenize

primary can be set to true or false and this indicates whether it is a primary or secondary instrument when

saving the card to the customer's wallet

High-level flow

How it works

Tokenizing a Gift Card

curl --location --request POST 'https://{{environment}}.wpay.com.au/v1/apm/tokenize' \
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--data-raw '{
 "data": {
 "paymentInstrumentType": "GIFTCARD",
 "payload": {
 "cardNumber": "628000*************",
 "pinCode": "****",
 "primary": false,
 "save": true
 }
 },
 "meta": {}
}'

23

Tokenizing PayPal

save can be set to true or false and this indicates whether to save the card in the customer's wallet after

tokenizing (multi-use token) or to only have a token be valid for a single transaction (single-use token)

Currently Wpay supports both the Checkout and Vault flows for PayPal. Please refer to the Wpay PayPal

documentation to get further detailed information about each of the supported PayPal integration patterns.

The Checkout with PayPal integration pattern will allow you to tokenize a PayPal or Pay in 4 nonce into a single-use

payment instrument. This means payment instruments generated using the PayPal Checkout integration will never be

saved to the customer's wallet.

�. Integrate your site with PayPal to facilitate the checkout journey and allow a customer to log in to their PayPal

account and approve the payment.

�. Once the payment has been approved PayPal will provide you with a nonce which can then be provided to Wpay

to use for payments.

�. The PayPal nonce is processed by us and we return a payment token which is a unique representation of the

PayPal account without any sensitive information.

�. The payment token can be used in our payment services to make a payment.

cURL JavaScript

High Level Flow

Tokenizing PayPal for Checkout Flow

How it works

curl --location --request POST 'https:/{{environment}}.wpay.com.au/v1/apm/tokenize' \
--header 'Authorization: Bearer 2Q0BRJbdbJAljXsX6q35fuyN6w9X' \
--header 'Content-Type: application/json' \
--header 'X-Api-Key: 9JMPM102iV1PtnO6HwZoorYNpdfqAWap' \
--data-raw '{
 "data": {
 "paymentInstrumentType": "PAYPAL",
 "payload": {
 "nonce": "35ecab49-4d75-0687-72ba-2794b490e071"
 }
 },
 "meta": {}
}'

24

https://developer.paypal.com/braintree/docs/guides/paypal/checkout-with-paypal
https://developer.paypal.com/braintree/docs/guides/paypal/vault

Where:

nonce is the value PayPal returns upon successfully validating the payment request.

To tokenize your customer's PayPal account and use it to make a payment or store it in the customer's wallet, you will

need to first provide us with your PayPal account information so that we can link this to your Wpay account.

To tokenize a customer's PayPal account you can make use of either our SDKs or APIs.

�. Integrate your site with PayPal to facilitate the checkout journey and allow a customer to log in to their PayPal

account and approve the payment.

�. Once the payment has been approved PayPal will provide you with a nonce which can then be provided to Wpay

to use for payments or to even store within the customer's wallet to allow for easy one-click payments in the

future.

�. The PayPal nonce is processed by us and we return a payment token which is a unique representation of the

PayPal account without any sensitive information.

�. The payment token can be used in our payments services to make a payment.

This method should be used when dealing with a registered customer on your website and where the user has been

authenticated as a registered customer.

cURL JavaScript Swift Kotlin

Where:

nonce is the value PayPal returns upon successfully validating the payment request

primary can be set to true or false and this indicates whether it is a primary or secondary instrument when

saving the card to the customer's wallet

This method should be used when dealing with a guest customer on your website and where the user has been

authenticated as a guest customer.

Tokenizing PayPal for Vault Flow

How it works

Tokenizing PayPal for a Registered Customer

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/paypal/tokenize' \
--header 'Accept: application/json' \
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--data-raw '
{
 "primary": true,
 "nonce": "8ca99905-2419-09ab-742d-2794b490e071"
}
'

Tokenizing PayPal for a Guest Customer

25

Tokenizing Apple Pay

cURL JavaScript Swift Kotlin

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/guest/paypal/tokenize' \
--header 'Accept: application/json' \
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--data-raw '
{
 "nonce": "8ca99905-2419-09ab-742d-2794b490e071"
}
'

To tokenize an Apple Pay instrument and use it to make a payment or store it in the customer's Wpay wallet, we will

first need to set up your merchant profile. To tokenize a customer's Apple Pay instrument you can make use of our

APIs.

�. Integrate your websites with Apple Pay to facilitate the checkout journey and allow a customer to select an

instrument stored in their Apple Pay account.

�. Get a paymentsession object from Wpay to create and encrypt payment data (since you will be using Wpay

Apple Pay certificate).

�. Once the user authorises the payment using Touch ID / Face ID, send the encrypted payment data to Apple

servers, where it is re-encrypted using Wpay Payment Processing certificate and receive back a PaymentToken

from Apple.

�. This PaymentToken can then be provided to Wpay to be decrypted in our secure environment for tokenization.

Please see the Payment Token Format for more information.

�. The Apple Pay data is processed by us during tokenization and we return a Wpay PaymentToken which is a unique

representation of the Apple Pay instrument without any sensitive information.

📘 Apple Pay on the Web (Safari)
For Apple Pay on the web, you will use Wpay Apple Pay certificate that we can configure against your

merchant's profile in our system.

High-level flow - Web

How it works

26

https://developer.apple.com/library/archive/documentation/PassKit/Reference/PaymentTokenJSON/PaymentTokenJSON.html

�. The Wpay PaymentToken can be used in our payments services to make a payment.

�. Integrate your iOS app with Apple Pay to facilitate the checkout journey and allow a customer to select an

instrument stored in their Apple Pay account.

�. Get a paymentsession object from Apple using your own Apple Pay certificate to create and encrypt payment

data.

�. Once the user authorises the payment using Touch ID / Face ID, send the encrypted payment data. to Apple

servers, where it is re-encrypted using your Payment Processing certificate and receive back a PaymentToken

from Apple.

�. This PaymentToken can then be provided to Wpay to be decrypted in our secure environment for tokenization.

Please see the Payment Token Format for more information.

�. The Apple Pay data is processed by us during tokenization and we return a Wpay PaymentToken which is a unique

representation of the Apple Pay instrument without any sensitive information.

�. The Wpay PaymentToken can be used in our payments services to make a payment.

This method should be used to tokenize Apple Pay payment token data. The same API can be used for registered and

guest customers.

📘 Apple Pay on Mobile Apps

For Apple Pay on Mobile Apps you will need to first provide us with your Apple Pay account information so

that we can link this to your Wpay account.

High level flow - iOS App

How it works

Tokenizing Apple Pay

27

https://developer.apple.com/library/archive/documentation/PassKit/Reference/PaymentTokenJSON/PaymentTokenJSON.html

cURL JavaScript Swift

Where:

paymentInstrumentType should be set to APPLEPAY for Apple Pay tokenization.

data within payload can be retrieved from the decrypted PaymentToken from Apple. This contains encrypted

payment data.

ephemeralPublicKey can be retrieved from the decrypted PaymentToken from Apple. This is an Ephemeral

public key bytes.

publicKeyHash can be retrieved from the decrypted PaymentToken from Apple. This is a hash of the encoded

public key of your merchantʼs certificate.

transactionId can be retrieved from the decrypted PaymentToken from Apple. This is a transaction identifier

that is generated on the device.

signature can be retrieved from the decrypted PaymentToken from Apple. The signature includes the signing

certificate, its intermediate CA certificate, and information about the signing algorithm.

version can be retrieved from the decrypted PaymentToken from Apple. The token uses EC_V1 for ECC-

encrypted data, and RSA_V1 for RSA-encrypted data.

instrumentType is the payment network of the card selected.

primary can be set to true or false and this indicates whether it is a primary or secondary instrument when

saving the card to the customer's wallet.

comment is the display name of the card selected, generally, this is the payment network following by the last 4

digits of the selected card.

applicationData can be retrieved from PaymentToken from Apple. This field contains application-specific data

or state.

curl --location --request POST 'https://{{environment}}.wpay.com.au/v1/apm/tokenize' \
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--data-raw '{
 "data": {
 "paymentInstrumentType": "APPLEPAY",
 "payload": {
 "data": "a15owFtc***********************",
 "ephemeralPublicKey": "MFkwEwY**********************************",
 "publicKeyHash": "AwqjNE********************************",
 "transactionId": "87a124b**********************",
 "signature": "MIAGCSq********************************",
 "version": "EC_V1",
 "instrumentType": "AMEX",
 "primary": true,
 "comment": "AMEX-0001",
 "applicationData":"3B4893D8B**"
 }
 },
 "meta": {}
}'

Sample Tokenization Response

28

Tokenizing Google Pay

JSON

Where:

paymentInstrumentId is the new payment instrument id to be used for payments.

allowed is a flag to indicate if the merchant profile in the container is allowed to use this payment instrument.

status indicates the status of the payment instrument in the container.

paymentInstrumentType is the type of instrument for which token has been generated. For Apple Pay, this value

will be set to APPLE_PAY.

paymentToken is the Apple pay payment token. Payment token is a unique identifier for the payment instrument.

stepUpToken is the step-up token to be used for payments.

{
 "data": {
 "paymentInstrumentId": "2484***",
 "allowed": true,
 "status": "VERIFIED",
 "paymentInstrumentType": "APPLE_PAY",
 "paymentToken": "2f3ddc79-****-****-****-************",
 "stepUpToken": "e80c40fe-****-****-****-************"
 },
 "meta": {}
}

To tokenize a Google Pay™ instrument and use it to make a payment or store it in the customer's Wpay wallet, we will

first need to set up your merchant profile. To tokenize a customer's Google Pay instrument you can make use of our

APIs.

�. Integrate your app or websites with Google Pay to facilitate the checkout journey and allow a customer to select

an instrument stored in their Google Pay account and approve the payment.

�. Once the payment has been approved, Google Pay will provide you with a payment token data payload which can

then be sent to Wpay for payments.

�. The Google Pay token data is decrypted and processed by us. We then return a Wpay PaymentToken which is a

unique representation of the Google Pay instrument without any sensitive information.

�. The Wpay PaymentToken can be used in our payments services to make a payment.

High-level flow

How it works

29

Making a Payment

This method should be used to tokenize Google Pay payment token data. The same API can be used for registered

and guest customers.

cURL JavaScript Swift Kotlin

Where:

paymentInstrumentType should be set to GOOGLEPAY for Google Pay tokenization

instrumentType is the payment network of the card selected.

comment is the display name of the card selected, generally, this is the payment network followed by the last 4

digits of the selected card.

tokenData is the JSON Escaped token data returned by Google Pay upon successfully authenticating the

payment.

Tokenizing Google Pay

curl --location --request POST 'https://{{environment}}.wpay.com.au/v1/apm/tokenize' \
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--data-raw '{
 "data": {
 "paymentInstrumentType": "GOOGLEPAY",
 "payload": {
 "instrumentType": "AMEX",
 "comment": "AMEX-5232",
 "tokenData": "{\"protocolVersion\":\"ECv2\",\"signature\":\"MEQ**********==\",\"intermediateS
 }
 },
 "meta": {}
}'

Once a payment instrument has been tokenized the payment token (instrumentId) can be used to make a payment

through our APIs. The instrumentId representing the tokenized instrument can be used to make payments in the

same way regardless of the payment method the token represents.

The payments API will also be used to handle payments for your registered as well as guest customers.

When making a payment you have the option to apply two different transaction types depending on your business's

requirements and use cases.

The Pre-auth flow allows you to make a purchase and reserve the funds on the customer's card and complete the

transaction at a later stage to take the funds or should the need arise voids the full transaction amount. Once a

transaction has been completed it can be refunded for either part of or the full transaction amount.

Transaction Types

Pre-auth

30

The Purchase flow allows you to process a transaction where the funds on the customer's card are taken immediately.

Once a purchase has been successfully processed you can use refund to refund either part of or the full transaction

amount.

To submit a payment request using an Instrument Id generated during the tokenization process, please call the

Payment API below.

📘 Preauth Flow

Pre-authorisation is only applicable to debit and credit cards either in the Wpay wallet and some gift card

programs.

Purchase

Make a Payment

31

cURL JavaScript Swift Kotlin

Where:

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/customer/payments
--header 'X-Api-Key: {{yourAPIKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--header 'Content-Type: application/json' \
--data-raw '{
 "data": {
 "transactionType": {
 "creditCard": "PREAUTH",
 "giftCard": "PURCHASE",
 "payPal": "PURCHASE",
 "googlePay": {
 "creditCard": "PREAUTH",
 "debitCard": "PURCHASE"
 },
 "applePay": {
 "creditCard": "PREAUTH",
 "debitCard": "PURCHASE"
 }
 },
 "clientReference": "UNIQUE_CLIENT_REFERENCE",
 "orderNumber": "UNIQUE_ORDER_NO",
 "shippingAddress": {

"firstName": "John",
"lastName": "Doe",
"company": "Wpay",
"extendedAddress": "4th Floor",
"streetAddress": "407 Elizabeth Street",
"suburb": "Surry Hills",
"stateOrTerritory": "NSW",
"postalCode": "2010",
"countryCode": "AU"

},
 "payments": [
 {
 "paymentInstrumentId": "213553",
 "amount": 10.5
 },
 {
 "paymentInstrumentId": "215319",
 "amount": 6.5
 }
]
 },
 "meta": {
 "fraud": {
 "provider": "cybersource",
 "version": "CyberSourceTransaction_1.101",
 "format": "XML",
 "responseFormat": "XML",
 "message": "<?xml version=\"1.0\" encoding=\"Windows-1252\"?>\r\n<RequestMessage xmlns:xsd=\"http
 },
 "challengeResponses": [
 {
 "instrumentId": "213553",

"type": "STEP UP",

32

transactionType is the method by which you want to process the transaction, either as a pre-auth or as a

straight purchase.

clientReference is your application specific reference number. This number should uniquely identify the

transaction in your system

orderNumber is your order number of the transaction as generated during the order creation.

shippingAddress is the customer's shipping address.

paymentInstrumentId is the tokenized payment instrument with which you want to make the payment. This is

either from the frames SDK response or the list payment instruments response.

fraud is the CyberSource fraud payload for the transaction. Please see Fraud Detection for more information

around the fraud payload.

challengeResponses contains the payment challenge data such as the step-up token for CVV capture or PayPal

Seller Protection deviceData . See PayPal Seller Protection for more information.

Wpay also supports split payments across multiple instruments in our Payments API. When you choose to enable this

option in your store, the customer may be presented a checkout page with all available payment instruments and this

allows them to pay using some or all instruments in a single payment request.

Supported schemes:

Payment split across multiple debit/credit cards.

Payment split across multiple gift cards.

Payment split across multiple debit/credit cards + multiple gift cards.

A challenge-response may be required during payments based on various factors such as the payment instrument

type being used or whether 3DS has been invoked.

A step up token is a token linked to the CVV which is captured as part of the card tokenization process. CVV's are not

stored within the vault due to PCI compliance legislation and as such a temporary token is given when a CVV is

captured. See the Step Up Token Process for more information on generating a step up token.

A step up token is usually required:

Split Payments

📘 A note on Split Payments

If part of the split payment is rejected (e.g. not enough funds in one of the gift cards), Wpay will return

partialSuccess as true in the payment response. Wpay will attempt to roll back the already completed

transactions and the status of this rollback can be seen in the rollback field. Should this be FAILED you

will need to work out how to handle this as part of your process internally. Some possible options would be

to submit a Refund or Void payment requests or manually handling the partial rejection through manual

process.

Challenge Responses During Payments

Step Up Tokens

33

On un-verified cards i.e. on cards where a transaction has not yet been completed (either a $0.01 pre-auth or a

full transaction).

Where your merchant settings indicate that a CVV is always required.

When setting up a payment agreement (recurring payment).

A step up token is not required:

For a short period after the card has been captured and tokenized as the step-up token from the card capture will

still be valid.

When your merchant settings indicate that a CVV is not required on verified cards saved in your customer's

wallets.

When charging a payment agreement as part of a recurring payment.

After a payment has been processed you will receive a detailed response showing the outcome of the payment

request.

📘 3DS2 Integration

If you are interested in 3DS2, please review the 3D Secure (3DS).

Transaction Outcomes

34

JSON

{
 "data": {
 "transactionId": "75a37436-6f59-475c-b915-b370ab5bf513",
 "paymentRequestId": "12e4623d-af7e-4bfd-9cab-070ccd3bbd52",
 "type": "PAYMENT",
 "status": "APPROVED",
 "grossAmount": 17,
 "executionTime": "2021-09-27T23:13:00.857Z",
 "merchantId": "10001",
 "merchantReferenceId": "20170505065",
 "clientReference": "T5ESYRPWJKPHk997",
 "instruments": [
 {
 "paymentInstrumentId": "215319",
 "instrumentType": "CREDIT_CARD",
 "transactions": [
 {
 "type": "PREAUTH",
 "executionTime": "2021-09-27T23:13:01.379Z",
 "paymentTransactionRef": "1000000007817560",
 "status": "APPROVED",
 "amount": 6.5
 }
]
 },
 {
 "paymentInstrumentId": "215318",
 "instrumentType": "CREDIT_CARD",
 "transactions": [
 {
 "type": "PREAUTH",
 "executionTime": "2021-09-27T23:13:01.379Z",
 "paymentTransactionRef": "1000000007817559",
 "status": "APPROVED",
 "amount": 10.5
 }
]
 }
],
 "subTransactions": [
 {
 "transactionReceipt": "1000000007817558",
 "partialSuccess": false,
 "fraudResponse": {
 "clientId": "6327843829656897803007",
 "reasonCode": "481",
 "decision": "REJECT"
 },
 "paymentResponses": [
 {
 "paymentInstrumentId": "215319",
 "paymentToken": "de770338-5fde-4e15-a232-5efd1246ef62",
 "paymentTransactionRef": "1000000007817560",
 "threeDS": {

"sli": null,

Transaction Outcomes

35

Complete a Pre-authorised Payment

The status of your payment request is provided in the response and can be seen at both the overall transaction as

well as sub-transaction level. The outcome of a payment can either be APPROVED or REJECTED.

The transaction ID transactionId is returned as part of a payment response and is a unique reference to the full

payment request. A payment can be made up of multiple sub-transactions each with a paymentTransactionRef

which is the unique reference of the sub-transaction.

The transactionId and paymentTransactionRef are important as these will be a required piece of information when

either completing a pre-authorised transaction, voiding the transaction or processing a refund.

Should you use the fraud services of Wpay the fraud outcome (fraudResponse) in the payment response will give

you the outcome of the fraud decision manager check. This can be Accept, Reject or Review.

Accept: No fraud detected. Advice is that payment can proceed.

Reject: Fraud likely. Advice is that payment should be voided or refunded.

Review: Fraud potential. Payment should be manually reviewed to determine fraud decision.

Transaction Reference

Fraud Outcomes

Completing a transaction allows you to take either the full or partial funds from a previously pre-authorised payment.

Utilising our completions feature you are able to take either the full amount reserved on the customer's payment

instrument or a partial amount less than the total amount reserved utilising the original payment transaction ID and

reference number.

Completions can only be processed on payments made using the pre-authorisation flow if the transaction has not

been voided.

Using the transactionId and optionally the paymentTransactionRef from a pre-authorised payment you are able to

complete for an amount up to the amount pre-authorised. You can simply call this method with the transactionId

and all sub-transactions will be completed for their full amounts or you can specify the sub-transactions
paymentTransactionRef and the amount you wish to complete the transaction for.

How it works

🚧 Restricted API
This API is IP restricted to allow unauthenticated server-side calls. Your servers will need to be on an allow

list to allow completions.

Completing a Payment

36

cURL JavaScript

Where:

transactionId is the unique reference to pre-authorised payment outcome received from us when making a

payment.

clientReference is your application-specific reference number. This number should uniquely identify the

transaction in your system

orderNumber is your order number of the transaction as generated during the order creation.

paymentTransactionRef is the specific sub transaction reference within the parent transactionId .

amount is the value for which you want to complete the sub transaction.

Following the completion, an outcome of the transaction is returned with the status of the completion as well as the

transaction references.

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/merchant/transacti
--header 'content-type: application/json' \
--header 'content-type: application/json' \
--header 'X-Api-Key: {{yourAPIKey}}' \
--data-raw '{
 "data": {
 "orderNumber": "UNIQUE_ORDER_NO",
 "clientReference": "UNIQUE_CLIENT_REFERENCE",
 "completions":[{
 "paymentTransactionRef": "1000000007828829",
 "amount": 10.5
 }]
 },
 "meta": {}
}'

Completion Outcome

37

Void a Pre-authorised Payment

JSON

{
 "data": {
 "transactionId": "23fe9174-fdf3-4ba0-88d0-f0678c510cab",
 "merchantReferenceId": "b717215d-4afc-4760-ab08-0fac46150309",
 "walletId": "08d92644-121e-47cb-a711-7e7389cb576d",
 "paymentRequestId": "9074e03f-05e1-4b55-a7eb-f1a0336acccc",
 "grossAmount": 50.5,
 "clientReference": "ref",
 "executionTime": "2021-10-06T06:00:21.035Z",
 "type": "COMPLETION",
 "status": "APPROVED",
 "instruments": [
 {
 "paymentInstrumentId": "215931",
 "instrumentType": "CREDIT_CARD",
 "transactions": [
 {
 "type": "COMPLETION",
 "executionTime": "2021-10-06T06:00:21.035Z",
 "paymentTransactionRef": "1000000007828829",
 "completionTransactionRef": "1000000007828838",
 "status": "APPROVED",
 "amount": 10.5
 }
]
 }
],
 "subTransactions": [
 {
 "transactionReceipt": "1000000007828838",
 "partialSuccess": false,
 "completionResponses": [
 {
 "paymentTransactionRef": "1000000007828829",
 "completionTransactionRef": "1000000007828838",
 "amount": 10.5,
 "externalServiceCode": "00",
 "externalServiceMessage": "APPROVED"
 }
]
 }
]
 },
 "meta": {}
}

Voiding a transaction allows you to cancel the reserved amount which has been held on the customer's card as part

of a purchase made using the pre-authorisation flow.

How it works

38

Utilising our voids feature you are able to void the full transaction amount prior to taking the reserved funds from the

customer's card utilising the original payment transaction ID and reference number.

Voids can only be processed on payments made using the pre-authorisation flow if the transaction has not yet been

completed.

Using the transactionId and optionally the paymentTransactionRef from a pre-authorised payment you are able to

void a pre-authorised transaction which will void the full amount reserved. You can simply call this method with the
transactionId and all subtransactions will be voided for their full amounts or you can specify the sub-transactions

paymentTransactionRef you wish to void should you only wish to void part of the transaction.

cURL JavaScript

Following the void, an outcome of the transaction is returned with the status of the void as well as the transaction

references.

🚧 Restricted API

This API is IP restricted to allow unauthenticated server-side calls. Your servers will need to be on an allow

list to allow voids.

Voiding a Payment

// probably should use :transactionId in the below URL to indicate it as a parameter
// same for Javascript examples
// the URL used in Swift/Kotlin examples seems incorrect.

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/merchant/transacti
--header 'content-type: application/json' \
--header 'X-Api-Key: {{yourAPIKey}}' \
--data-raw '{
 "data": {
 "orderNumber": "UNIQUE_ORDER_NO",
 "clientReference": "UNIQUE_CLIENT_REFERENCE",
 "voids": [
 {
 "paymentTransactionRef": "1000000007818208"
 },
 {
 "paymentTransactionRef": "1000000007818209"
 }
]
 },
 "meta": {}
}'

Void Outcome

39

Refund a Payment

JSON

{
 "data": {
 "transactionId": "d7af9019-056d-4920-b6c1-adff66eab0eb",
 "merchantReferenceId": "f69ba188-4d09-43d2-af19-8f0eba93cde0",
 "walletId": "87e47ba3-d2d0-437d-bc7d-d93581ae4e8f",
 "paymentRequestId": "a3be273e-4a62-4956-b1f0-4a2f2770f76e",
 "grossAmount": 0,
 "clientReference": "T8VZS5KQH0N278D",
 "executionTime": "2021-09-28T06:31:44.565Z",
 "type": "VOID",
 "status": "APPROVED",
 "instruments": [
 {
 "paymentInstrumentId": "215353",
 "instrumentType": "CREDIT_CARD",
 "transactions": [
 {
 "type": "VOID",
 "executionTime": "2021-09-28T06:31:44.565Z",
 "paymentTransactionRef": "1000000007818209",
 "voidTransactionRef": "1000000007818214",
 "status": "APPROVED",
 "amount": 0
 }
]
 },
 {
 "paymentInstrumentId": "215352",
 "instrumentType": "CREDIT_CARD",
 "transactions": [
 {
 "type": "VOID",
 "executionTime": "2021-09-28T06:31:44.565Z",
 "paymentTransactionRef": "1000000007818208",
 "voidTransactionRef": "1000000007818213",
 "status": "APPROVED",
 "amount": 0
 }
]
 }
],
 "subTransactions": []
 },
 "meta": {}
}

Refunds allow you to refund a previous transaction to the original instrument from where the purchase was made.

Utilising our refunds feature you are able to refund an amount up to the value of the full transaction amount utilising

the original payment transaction ID and reference number.

How it works

40

Multiple refunds are able to be processed on the transaction up to the original transaction amount.

Refunds can only be processed on payments made using the purchase flow or after a transaction using the pre-

authorisation flow has been completed.

Using the transactionId and optionally the paymentTransactionRef from a payment you are able to refund a

transaction up to the amount of the original transaction. You can simply call this method with the transactionId and

all subtransactions will be refunded for their full amounts or you can specify the sub-transactions

paymentTransactionRef and the amount you wish to refund the transaction for.

cURL JavaScript

Following the refund, an outcome of the transaction is returned with the status of the refund as well as the

transaction references.

🚧 Restricted API

This API is IP restricted to allow unauthenticated server-side calls. Your servers will need to be on our allow

list to allow refunds.

Refund a Payment

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/merchant/transacti
--header 'content-type: application/json' \
--header 'X-Api-Key: {{yourAPIKey}}' \
--data-raw '{

"data" : {
"reason": "Customer returned item",
"clientReference": "UNIQUE_CLIENT_REFERENCE",

 "subTransactions": [
 {
 "subTransactionRef": "1000000007818223",
 "amount": 20.5
 },
 {
 "subTransactionRef": "1000000007818224",
 "amount": 10.5
 }
]

},
"meta": {}

}'

Refund Outcome

41

JSON

{
 "data": {
 "transactionId": "c1de8321-64dc-48a8-ae00-5f8ab341cf05",
 "merchantReferenceId": "c691fdb2-c072-426a-b2ec-324c53366747",
 "walletId": "7aa8634e-3c4e-41f7-9f15-0963515de94a",
 "paymentRequestId": "1ed7bd1a-1068-4f7a-9655-8874aaa6685c",
 "refundReason": "Customer returned item",
 "grossAmount": 31,
 "clientReference": "UNIQUE_CLIENT_REFERENCE",
 "executionTime": "2021-09-28T06:45:54.138Z",
 "type": "REFUND",
 "status": "APPROVED",
 "instruments": [
 {
 "paymentInstrumentId": "215355",
 "instrumentType": "CREDIT_CARD",
 "transactions": [
 {
 "type": "REFUND",
 "executionTime": "2021-09-28T06:45:54.138Z",
 "paymentTransactionRef": "1000000007818223",
 "refundTransactionRef": "1000000007818227",
 "status": "APPROVED",
 "amount": 20.5
 }
]
 },
 {
 "paymentInstrumentId": "215354",
 "instrumentType": "CREDIT_CARD",
 "transactions": [
 {
 "type": "REFUND",
 "executionTime": "2021-09-28T06:45:54.138Z",
 "paymentTransactionRef": "1000000007818224",
 "refundTransactionRef": "1000000007818226",
 "status": "APPROVED",
 "amount": 10.5
 }
]
 }
],
 "subTransactions": [
 {
 "transactionReceipt": "1000000007818225",
 "refunds": [
 {
 "paymentTransactionRef": "1000000007818223",
 "refundTransactionRef": "1000000007818227",
 "amount": 20.5,
 "externalServiceCode": "00",
 "externalServiceMessage": "APPROVED"
 },
 {

"paymentTransactionRef": "1000000007818224",

42

Customer Wallet Management

43

Overview

Retrieve a Customers Wallet

When a card is tokenized you are able to select to store this against customers wallet in the Wpay secure cardholder

environment. The payment token provided back during tokenization is a unique payment token for this saved

instrument for your merchant account.

Once a card has been stored against your customer's wallet you are able to retrieve the wallet and view the payment

instruments stored. These can then be represented back to your customer allowing them to select from a list of saved

payment methods and instruments when making a payment on your merchant site.

For more information on making a payment using a payment token see: Making a Payment

How it works

Where a registered customer has saved a payment instrument to their wallet during payment you are able to retrieve

these saved payment instruments during subsequent checkouts allowing for easy checkout using saved payment

details.

The wallet stores all tokenized payment instruments for your customer along with any configured payment

agreements set up for recurring payments. This allows for simple checkout using an already saved payment method.

A list of saved payment instruments with you can be retrieved using the list instrument feature.

cURL JavaScript Swift Kotlin

Your customers saved instruments and payment agreements will be returned and allow you to show their saved

instruments for selection during checkout.

List Instruments

curl --location --request GET 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/customer/instrument
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \

44

JSON

Where:

{
 "data": {
 "creditCards": [
 {
 "paymentInstrumentId": "213###",
 "paymentToken": "7578a5bc-0aaa-####-####-############",
 "status": "VERIFIED",
 "createdOn": "2021-09-07T15:45:39.311+10:00",
 "lastUpdated": "2021-09-20T16:50:03.090+10:00",
 "lastUsed": "2021-09-20T16:50:02.592+10:00",
 "primary": false,
 "allowed": true,
 "scheme": "MASTERCARD",
 "cardSuffix": "0407",
 "cardName": "CHAPMAN",
 "expiryMonth": "01",
 "expiryYear": "23",
 "cvvValidated": false,
 "expired": false,
 "requiresCVV": true,
 "updateURL": "https://iframe.environment.payments.woolworths.com.au/container-ws/getCaptu
 "stepUp": {
 "type": "CAPTURE_CVV",
 "mandatory": true,
 "url": "https://iframe.environment.payments.woolworths.com.au/container-ws/getCapture
 "sessionId": "4f71251c-788a-####-####-############"
 }
 },
 {
 "paymentInstrumentId": "214###",
 "paymentToken": "c8b3cb08-f2b2-####-####-############",
 "status": "UNVERIFIED_PERSISTENT",
 "createdOn": "2021-09-22T16:24:32.622+10:00",
 "lastUpdated": "2021-09-22T16:24:32.622+10:00",
 "primary": false,
 "allowed": true,
 "expiryYear": "23",
 "scheme": "VISA",
 "expiryMonth": "02",
 "cardName": "My Card",
 "cardSuffix": "0608",
 "cvvValidated": false,
 "expired": false,
 "requiresCVV": true,
 "updateURL": "https://iframe.environment.payments.woolworths.com.au/container-ws/getCaptu
 "stepUp": {
 "type": "CAPTURE_CVV",
 "mandatory": true,
 "url": "https://iframe.environment.payments.woolworths.com.au/container-ws/getCapture
 "sessionId": "4f71251c-788a-####-####-############"
 }
 }
],
 "giftCards": [],

"payPal": [

45

paymentInstrumentId is the payment token of the associated instrument saved in the customer's wallet

paymentToken is the payment token unique GUID of the associated instrument saved in the customer's wallet

status is either VERIFIED or UNVERIFIED_PERSISTENT. Verified indicates that a successful verification or

purchase has occurred using the instrument. Unverified indicates that the card has not yet been verified or used

in a purchase.

lastUpdated is the date the instruments information was last updated.

lastUsed is the date the instrument was last used to make a payment.

allowed indicates whether the instrument is an allowed payment method based on your merchant config with

Wpay.

scheme indicates the issuer scheme of the tokenized card.

cardSuffix provides the last 4 digits of the tokenized credit card for display purposes.

cardName is the name given to the card at the point of tokenization.

expiryMonth indicates the month to which the card will be valid. This is indicated as a 2 digit MM field.

expiryYear indicates the year in which the card expires. This is indicated as a 2 digit YY field.

cvvValidated

expired indicates if the card has expired based on the cards expiry month and year as compared to the current

date.

requiresCVV indicates if the CVV is required when making a payment utilizing the saved card. This is based on

your merchant preferences with Wpay. Where this is true a step up token will need to be provided during

payment. See Step Up Process

stepUp: mandatory will align with the requiresCVV indicator.

You can also include an optional include=GC_BALANCE parameter when calling Get Payment Instruments List to

retrieve all saved payment instruments and get the gift card balance at the same time. Refer to Retrieve Gift Card

Balance using List Instruments.

In some circumstances, you may want to retrieve your registered customers gift card from their wallet. Provided you

already know the paymentInstrumentId from List Instrument API, you may call the API below to retrieve the gift card

information securely.

cURL JavaScript Swift Kotlin

Where

uriEncodedPublicKey query parameter is the RSA / ECC public key

algo query parameter is either set to rsa for RSA encryption or ec for ECC encryption.

paymentInstrumentId is the tokenized payment instrument of the gift card. This can be derived the list payment

instruments response.

List Instruments including Gift Card Balance

Retrieve a Gift Card

curl --location --request GET 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/customer/instrument
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}'

46

Transaction Outcome

JSON

Where

cipherText is encrypted and base64 encoded gift card data. You will need to decrypt and decode it (using

base64 encoding) in order to extract the gift card number and pin.

paymentInstrumentId is the payment token of the associated gift card saved in the customer's wallet.

paymentToken is the payment token unique GUID of the associated gift card saved in the customer's wallet

status is either VERIFIED or UNVERIFIED_PERSISTENT. Verified indicates that a successful verification or

purchase has occurred using the instrument. Unverified indicates that the card has not yet been verified or used

in a purchase.

lastUpdated is the date the gift card information was last updated.

lastUsed is the date the gift card was last used to make a payment.

allowed indicates whether the gift card is an allowed payment method based on your merchant config with

Wpay.

cardSuffix provides the last 4 digits of the tokenized gift card for display purposes.

programName is the gift card name given at the point of tokenization.

Sample of the gift card number and pin after decryption can be seen below.

📘 Gift Card Retrieval Encryption

To retrieve gift card number and pin securely, you must generate either an RSA (Rivest-Shamir-Adleman) or

ECC (Elliptic Curve Cryptography) public and private keys on your server and embed the public key into the

request query parameter. The key pair must remain valid either for the duration of the customer session or

for one-time use in a single request / response cycle. Provided the gift card can be found in the customers

wallet, you may then decrypt the response with the private key to extract the gift card number and pin.

{
 "data": {
 "paymentInstrumentId": "81xxx",
 "paymentInstrumentType": "GIFT_CARD",
 "paymentToken": "ec9b****-****-****-****-a8ca4f*******",
 "status": "UNVERIFIED_PERSISTENT",
 "createdOn": "2017-11-06T08:38:09.890Z",
 "lastUpdated": "2017-11-06T19:38:09.860+11:00",
 "lastUsed": "2017-10-12T13:25:49.770+11:00",
 "primary": true,
 "allowed": true,
 "paymentInstrumentDetail": {
 "cardSuffix": "2517",
 "programName": "WISH Gift Card"
 }
 },
 "meta": {
 "cipherText": "INLh2cH2MtnTKQ1RxwwWQHiXUZ**********************"
 }
}

47

Manage a Customers Wallet

Gift Card Balance Check

JSON

plainText={
 "pinCode" : "3333",
 "cardNumber" : "628759191************"
}

Your customers may wish to remove a saved instrument from their wallet after it has been saved. You can easily allow

customers to remove saved instruments from their wallet using the delete instrument feature.

cURL JavaScript Swift Kotlin

Once an instrument is successfully deleted from a customer's wallet it will no longer be returned when retrieving a

customer's wallet.

Delete an Instrument

curl --location --request DELETE 'https://dev-api.wpay.com.au/wow/v1/pay/instore/customer/instruments/{{p
--header 'X-Api-Key: {{yourAPIKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \

🚧 Instruments Linked to Payment Agreements

An instrument linked to an existing active payment agreement cannot be deleted from a customers wallet.

The payment agreement will need to be updated to a new payment instrument or the payment agreement

must be expired/deleted before the instrument can be removed.

As part of utilising gift cards on your site and as part of the customers wallet you may wish to retrieve the current

available balance for a gift card to display to a customer as well as calculate any split payments across the remaining

balance of a gift card and another payment instrument type.

Balance by Gift Card Number & Pin

📘 Single vs. Multiple Card Balance Check

When checking a card balance by gift card number and pin, the service is restricted to only check a single

instrument. When checking balance using a tokenized gift card's instrument ID, multiple gift card balances

can be processed in a single call.

48

cURL JavaScript Swift Kotlin

cURL JavaScript Swift Kotlin

JSON

Where:

balance is the remaining balance available for use on the gift card

expiryDay , expiryMonth & expiryYear provide the date on which the card is scheduled to expire

expired is a boolean which indicates whether the card is considered an expired card

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/giftcards/balance' \
--header 'accept: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--header 'Content-Type: application/json' \
--data-raw '{
 "giftCards": [
 {
 "cardNumber": "6280005563194014720",
 "pinCode": "5211"
 }
]
}'

Balance by Instrument ID

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/giftcards/balance' \
--header 'accept: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--header 'Content-Type: application/json' \
--data-raw '{
 "giftCardInstruments": [
 {
 "paymentInstrumentId": "163****"
 }
]
}'

Gift Card Balance Outcome

{
 "giftCardBalances": [
 {
 "cardNumber": "628000*************",
 "balance": 111.03,
 "expiryDay": "31",
 "expiryMonth": "12",
 "expiryYear": "2120",
 "expired": false
 }
]
}

49

You can also retrieve the balance of multiple gift cards in your wallet using Get Payment Instruments List by adding

include=GC_BALANCE optional query parameter. Refer to Retrieve a Customers Wallet for more information about List

Instruments.

cURL JavaScript Swift Kotlin

Retrieve Gift Card Balance using List Instruments

curl --location \
--request GET 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/customer/instruments?include=GC_BAL
--header 'accept: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--header 'Content-Type: application/json' \

List Instrument including Gift Card Balance Outcome

50

JSON

Where:

paymentInstrumentId is the payment token of the associated gift card saved in the customer's wallet.

paymentToken is the payment token unique GUID of the associated gift card saved in the customer's wallet

status is either VERIFIED or UNVERIFIED_PERSISTENT. Verified indicates that a successful verification or

purchase has occurred using the instrument. Unverified indicates that the card has not yet been verified or used

in a purchase.

{
 "data": {
 "creditCards": [],
 "giftCards": [
 {
 "paymentInstrumentId": "251****",
 "paymentToken": "a61aa56d-c9db-****-****-***********",
 "status": "VERIFIED",
 "createdOn": "2022-08-23T09:27:40.478+10:00",
 "lastUpdated": "2022-08-23T09:28:26.596+10:00",
 "lastUsed": "2022-08-23T09:28:26.105+10:00",
 "primary": true,
 "allowed": true,
 "programName": "Wish eGift Card",
 "cardSuffix": "8480",
 "stepUp": {
 "type": "REQUIRE_PASSCODE",
 "mandatory": false
 },
 "instrumentType": "GIFT_CARD",
 "balanceDetail": {
 "balance": 709.45
 }
 },
 {
 "paymentInstrumentId": "251****",
 "paymentToken": "f896b20a-34c0-****-****-***********",
 "status": "UNVERIFIED_PERSISTENT",
 "createdOn": "2022-08-23T09:19:04.186+10:00",
 "lastUpdated": "2022-08-23T09:27:40.472+10:00",
 "primary": false,
 "allowed": true,
 "cardSuffix": "6401",
 "programName": "Wish eGift Card",
 "stepUp": {
 "type": "REQUIRE_PASSCODE",
 "mandatory": false
 },
 "instrumentType": "GIFT_CARD",
 "balanceDetail": {
 "balance": 812.35
 }
 }
],
 "paymentAgreements": []
 },
 "meta": {}
}

51

lastUpdated is the date the gift card information was last updated.

primary indicates whether the gift card is the primary instrument in the customer's wallet to make payments.

allowed indicates whether the gift card is an allowed payment method based on your merchant config with

Wpay.

cardSuffix provides the last 4 digits of the tokenized gift card for display purposes.

programName is the gift card name given at the point of tokenization.

stepUp - mandatory will align with the stepUp - type indicator.

instrumentType is always GIFT_CARD for gift card instrument.

balanceDetail - balance is the remaining balance available for use on the gift card.

52

Recurring Payments

53

Overview

Payment Agreements

A payment agreement allows you to setup a recurring payment as part of a subscription or other similar service

between your business and customer. These payment agreements allow you to easily charge the customer on the

payment instrument linked to the payment agreement when required.

Currently, payment agreements are only supported for the credit/debit cards & PayPal methods when saved in the

customer's wallet.

How it works

A payment agreement can be created utilising an allowed payment instrument type (currently only debit cards, credit

cards and PayPal are supported instrument types for payment agreements) when saved in the customer's wallet.

When one of these allowed payment instrument types has been tokenized in your customer's wallet you are able to

create a payment agreement.

Utilising a saved payment instrument you can create a payment agreement which will allow you to charge the

agreement when required based on your billing cycle.

Payment agreements can only be created with instruments that are saved to the customer's wallet and cannot be

created using single-use instruments.

Create a Payment Agreement

📘 Scheduled Payments

Note that metadata captured as part of the payment agreement such as the charge frequency and amounts

do not result in charges automatically being processed by Wpay. As the merchant you will need invoke the

charge at the desired date to process the payment.

54

cURL JavaScript Swift Kotlin

Where:

clientReference is your application-specific reference number. This number should uniquely identify the

transaction in your system

orderNumber is your order number of the transaction as generated during the order creation.

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/customer/payments/
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--data-raw '{
 "data": {
 "clientReference": "UNIQUE_CLIENT_REFERENCE",
 "orderNumber": "UNIQUE_ORDER_NO",
 "customerRef": "12345",
 "description": "Description for Recurring Payment",
 "billingAddress": {
 "firstName": "John",
 "lastName": "Doe",
 "email": "jdoe@wpay.com.au",
 "company": "Wpay",
 "extendedAddress": "4th Floor",
 "streetAddress": "407 Elizabeth Street",
 "suburb": "Surry Hills",
 "stateOrTerritory": "NSW",
 "postalCode": "2010",
 "countryCode": "AU"
 },
 "paymentAgreement": {
 "paymentInstrumentId": "215726",
 "type": "RECURRING",
 "startDate": "2022-09-01T00:00:00.000+1100",
 "endDate": "2023-12-31T23:59:59.999+1100",
 "chargeFrequency": "WEEKLY",
 "chargeAmount": 25.99,
 "immediateCharge": true
 }
 },
 "meta": {
 "fraud": {
 "provider": "cybersource",
 "version": "CyberSourceTransaction_1.101",
 "format": "XML",
 "responseFormat": "XML",
 "message": "<?xml version=\"1.0\" encoding=\"Windows-1252\"?>\r\n<RequestMessage xmlns:xsd=\"
 },
 "challengeResponses": [
 {
 "instrumentId": "215726",
 "type": "STEP_UP",
 "token": "tokenise-stepup-token"
 }
]
 }
}'

55

paymentInstrumentId is the tokenized payment instrument which you want to link the payment agreement to.

This is either from the frames SDK response or the list payment instruments response.

type can be set to one of the following: ADHOC, INSTALLMENT or RECURRING. Depending on the value you

specify, Wpay will ensure the correct data element values are then passed to the Issuers as per the latest scheme

credential on file mandates.

ADHOC: payments can be charged at any time between the effective startDate and endDate (once or

multiple times).

INSTALLMENT: payments processed in multiple installments during the valid period of the agreement.

RECURRING: recurring charges (e.g. weekly, monthly, etc) - normally used in subscription-based services.

startDate is the date from which you want the payment agreement to be effective. This field cannot be set to a

date in the past and if you would like the start date to be from NOW then you may leave this field out of the

request and we will set the start date as a default to NOW.

endDate is the last date to which you want the payment agreement to be effective. This date cannot be set to a

date before the startDate . If your recurring payment has no end date then this field can be omitted or set to

null .

chargeFrequency can be captured as additional information when capturing a payment agreement, this will be

returned when viewing a payment agreement so you can display details of the payment agreement back to your

customers. Valid values are: ADHOC or WEEKLY , MONTHLY and ANNUALLY .

chargeAmount is the amount for which the payment agreement is being set up, this will be returned when

viewing a payment agreement so you can display details of the payment agreement back to your customers.

immediateCharge is set to true where you wish to process a change on the payment agreement as part of the

creation process. When this is set to true a charge request will be made on the payment agreement and the

outcome of the charge returned in the response. This will default to false.

fraud is the CyberSource fraud payload for the transaction. Please see the Fraud Detection page for more

information on the fraud process and fraud payload.

challengeResponses contains the payment challenge data such as the step-up token for CVV capture.

When a payment agreement has been successfully setup we will provide back the relevant information on your newly

created payment agreement.

Payment Agreement Outcome

📘 Payment Agreement Payment Token

The paymentToken is important as this will be required when editing, deleting or charging the payment

agreement. This can be saved in your scheduling system for charging or retrieved from the customers

saved payment agreements utilizing the view payment agreement functionality.

56

Immediate Charge False Immediate Charge True

Utilising our get payment agreements functionality you are able to retrieve all payment agreements which you have

setup for your customer or a single payment agreement. This can be used to display the payment agreements your

customer has setup with you or to retrieve the paymentToken linked to the payment agreement.

cURL JavaScript Swift Kotlin

This will return all the configured payment agreements for the customer

{
 "data": {
 "type": "RECURRING",
 "paymentInstrumentId": "215726",
 "paymentInstrumentType": "CREDIT_CARD",
 "startDate": "2022-08-31T23:00:00.000+10:00",
 "endDate": "2023-12-31T23:59:59.999+11:00",
 "chargeFrequency": "WEEKLY",
 "chargeAmount": 25.99,
 "scheme": "MASTERCARD",
 "expiryMonth": "01",
 "expiryYear": "23",
 "cardSuffix": "0407",
 "paymentToken": "e8605265-d983-4b3d-8a48-1204eb43ea6e",
 "description": "Description for Recurring Payment",
 "fraudResponse": {
 "clientId": "6474024752216768604008",
 "reasonCode": "480",
 "decision": "REVIEW",
 "riskInformation": [
 {
 "name": "Review rule1",
 "decision": "REVIEW"
 }
]
 }
 },
 "meta": {}
}

View a Payment Agreement

View all payment agreements for a customer

curl --location --request GET 'https://dev-api.wpay.com.au/wow/v1/pay/instore/customer/payments/agreement
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--data-raw ''

57

JSON

{
 "data": {
 "paymentAgreements": [
 {
 "paymentInstrumentId": "215726",
 "paymentToken": "e8605265-d983-4b3d-8a48-1204eb43ea6e",
 "status": "VERIFIED",
 "createdOn": "2021-10-01T11:31:49.574+10:00",
 "lastUpdated": "2021-10-01T11:31:49.574+10:00",
 "primary": false,
 "allowed": true,
 "endDate": "2023-12-31T23:59:59.999",
 "startDate": "2022-08-31T23:00",
 "chargeAmount": 25.99,
 "chargeCycle": "0",
 "type": "RECURRING",
 "chargeFrequency": "WEEKLY",
 "cardSuffix": "0407",
 "expiryMonth": "01",
 "expiryYear": "23",
 "scheme": "MASTERCARD",
 "expired": false,
 "updateURL": "https://dev-api.wpay.com.au/wow/v1/pay/paymentagreements/e8605265-d983-4b3d
 "stepUp": {
 "type": "CAPTURE_CVV",
 "mandatory": true,
 "url": "https://iframe.dev1.payments.woolworths.com.au/container-ws/getCaptureFrame/c
 "sessionId": "a1e23906-8889-47ef-a086-7b81bbc6c294"
 }
 },
 {
 "paymentInstrumentId": "215728",
 "paymentToken": "2e6f5c64-02fd-40b5-82af-27974093025e",
 "status": "VERIFIED",
 "createdOn": "2021-10-01T12:01:40.945+10:00",
 "lastUpdated": "2021-10-01T12:01:40.945+10:00",
 "primary": false,
 "allowed": true,
 "chargeAmount": 149.99,
 "type": "RECURRING",
 "endDate": "2023-12-31T23:59:59.999",
 "chargeFrequency": "MONTHLY",
 "startDate": "2022-08-31T23:00",
 "chargeCycle": "0",
 "cardSuffix": "0608",
 "expiryMonth": "02",
 "expiryYear": "23",
 "scheme": "VISA",
 "expired": false,
 "updateURL": "https://dev-api.wpay.com.au/wow/v1/pay/paymentagreements/2e6f5c64-02fd-40b5
 "stepUp": {
 "type": "CAPTURE_CVV",
 "mandatory": true,
 "url": "https://iframe.dev1.payments.woolworths.com.au/container-ws/getCaptureFrame/c

"sessionId": "a1e23906-8889-47ef-a086-7b81bbc6c294"

View a specific payment agreement

58

By specifying the paymentToken as part of the request URL you are able to retrieve the details for a specific payment

agreement.

cURL JavaScript Swift Kotlin

This will return the specified payment agreements details

JSON

Existing payment agreements can be updated to utilise a different instrument in the customer's wallet as well as other

information such as the charge frequency, amount, start and end date.

curl --location --request GET 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/customer/payments/a
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--data-raw ''

{
 "data": {
 "paymentInstrumentId": "215728",
 "paymentToken": "2e6f5c64-02fd-40b5-82af-27974093025e",
 "status": "VERIFIED",
 "createdOn": "2021-10-01T12:01:40.945+10:00",
 "lastUpdated": "2021-10-01T12:01:40.945+10:00",
 "primary": false,
 "allowed": true,
 "chargeAmount": 149.99,
 "type": "RECURRING",
 "endDate": "2023-12-31T23:59:59.999",
 "chargeFrequency": "MONTHLY",
 "startDate": "2022-08-31T23:00",
 "chargeCycle": "0",
 "cardSuffix": "0608",
 "expiryMonth": "02",
 "expiryYear": "23",
 "scheme": "VISA",
 "expired": false,
 "updateURL": "https://dev-api.wpay.com.au/wow/v1/pay/paymentagreements/2e6f5c64-02fd-40b5-82af-27
 "stepUp": {
 "type": "CAPTURE_CVV",
 "mandatory": true,
 "url": "https://iframe.dev1.payments.woolworths.com.au/container-ws/getCaptureFrame/cvv/a3697
 "sessionId": "a36977a6-d9b9-43c7-a13d-7855c0e9658b"
 }
 },
 "meta": {}
}

Update a Payment Agreement

59

cURL JavaScript Swift Kotlin

Should you wish to delete a payment agreement you can utilise our delete payment agreement functionality.

This will remove the payment agreement from your customer and it can no longer be retrieved when viewing the

payment agreement list or trying to retrieve the specific payment agreement.

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/customer/payments/
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--data-raw '{
 "data": {
 "clientReference": "00815690",
 "customerRef": "29332770",
 "orderNumber": "36915651",
 "billingAddress": {
 "firstName": "John",
 "lastName": "Doe",
 "email": "jdoe@wpay.com.au",
 "company": "Wpay",
 "extendedAddress": "4th Floor",
 "streetAddress": "407 Elizabeth Street",
 "suburb": "Surry Hills",
 "stateOrTerritory": "NSW",
 "postalCode": "2010",
 "countryCode": "AU"
 },
 "paymentAgreement": {
 "paymentInstrumentId": "1600183",
 "type": "RECURRING",
 "startDate": "2022-09-01T00:00:00.000+1100",
 "endDate": "2023-12-31T23:59:59.999+1100",
 "chargeFrequency": "MONTHLY",
 "chargeAmount": 149.99,
 "description": "Description for Recurring Payment"
 }
 },
 "meta": {
 "fraud": {
 "provider": "cybersource",
 "version": "CyberSourceTransaction_1.101",
 "format": "XML",
 "responseFormat": "XML",
 "message": "<?xml version=\"1.0\" encoding=\"Windows-1252\"?>\r\n<RequestMessage xmlns:xsd=\"
 },
 "challengeResponses": [
 {
 "instrumentId": "1600183",
 "type": "STEP_UP",
 "token": "tokenise-stepup-token"
 }
]
 }
}'

Delete a Payment Agreement

60

Charging Payment Agreements

cURL JavaScript Swift Kotlin

🚧 Expiring a Payment Agreement

Should you or your customer wish to cancel a payment agreement, rather than deleting it, update the

payment agreement and set the effective-to date to the date you wish to expire the agreement.

curl --location --request DELETE 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/merchant/payment
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--data-raw ''

A payment agreement can be charged when the client's billing schedule is reached by simply calling the charge API

with the payment agreement token for the customer and an amount.

The charge will be processed against the payment instrument linked to the payment agreement.

cURL JavaScript

📘 Billing Scheduler
Please note that the scheduling of the billing is not coordinated by Wpay and instead will need to be

processed by you or another payments provider.

curl --location --request PUT 'https://pt-api.wpay.com.au/wow/v1/pay/instore/merchant/payments/agreements
--header 'Content-Type: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \
--data-raw '{
 "data": {
 "paymentToken": "ce3ec653-199b-48c2-####-############",
 "amount": 2.99,
 "clientReference": "UNIQUE_CLIENT_REFERENCE",
 "orderNumber": "UNIQUE_ORDER_NO",
 "transactionType": {
 "creditCard": "PURCHASE"
 },
 "customerRef": "UNIQUE_CUSTOMER_REFERENCE"
 },
 "meta": {
 "fraud": {
 "provider": "cybersource",
 "version": "CyberSourceTransaction_1.101",
 "format": "XML",
 "responseFormat": "XML",
 "message": "<?xml version=\"1.0\" encoding=\"Windows-1252\"?>\r\n<RequestMessage xmlns:xsd=\"http
 }
 }
}'

61

Where:

paymentToken is the payment agreement token generated when the payment agreement is created.

amount is the amount you wish to charge the specified payment agreement for.

clientReference is your application-specific reference number. This number should uniquely identify the

transaction in your system

orderNumber is your order number of the transaction as generated during the order creation.

transactionType is the method by which you want to process the transaction, either as a preauth or as a

purchase.

fraud is the CyberSource fraud payload for the transaction

Following the charge, an outcome of the transaction is returned with the status of the payment agreement charge as

well as the transaction references.

🚧 Restricted API's

The Payment Agreement API's are IP restricted and do not allow unauthenticated server side calls. Your

servers will need to be whitelisted to allow charges to be processed.

Charge Outcome

62

JSON

{
 "data": {
 "transactionId": "0349cfd3-3daa-4981-965f-cfea9ef749ec",
 "merchantReferenceId": "40252433",
 "merchantId": "10001",
 "paymentRequestId": "e7bacfb6-a59c-4578-89b0-6d7a56c37f5f",
 "grossAmount": 6.99,
 "clientReference": "36952873",
 "executionTime": "2021-12-20T06:34:57.068Z",
 "type": "PAYMENT",
 "status": "APPROVED",
 "instruments": [
 {
 "paymentInstrumentId": "1966757",
 "instrumentType": "CREDIT_CARD",
 "transactions": [
 {
 "type": "PAYMENT",
 "executionTime": "2021-12-20T06:34:57.068Z",
 "amount": 6.99,
 "paymentTransactionRef": "1000000022049853",
 "status": "APPROVED"
 }
]
 }
],
 "subTransactions": [
 {
 "transactionReceipt": "1000000022049853",
 "paymentToken": "b5c65f37-a78c-45b5-b4e9-b77cdd3716e0",
 "paymentAgreement": {
 "type": "RECURRING",
 "paymentInstrumentId": "1966757",
 "paymentInstrumentType": "CREDIT_CARD",
 "startDate": "2021-12-20T17:34:51.227+11:00",
 "endDate": "2023-12-31T23:59:59.999+11:00",
 "chargeFrequency": "MONTHLY",
 "chargeAmount": 6.99,
 "expiryMonth": "11",
 "cardSuffix": "1111",
 "expiryYear": "22",
 "scheme": "VISA"
 },
 "fraudResponse": {
 "clientId": "6399820980916196203010",
 "reasonCode": "100",
 "decision": "ACCEPT"
 },
 "extendedTransactionData": [
 {
 "field": "bin",
 "value": "444433"
 },
 {

"field": "stan",

Transaction Outcomes

63

The status of your payment request is provided in the response as an externalServiceMessage . The outcome of a

payment agreement charge can either be APPROVED or REJECTED.

The transaction ID transactionId is returned as part of a charge payment agreement response and is a unique

reference to the charge request. A payment can be made up of multiple sub-transactions each with a

paymentTransactionRef which is the unique reference of the sub-transaction.

The transactionId and paymentTransactionRef are important as these will be a required piece of information when

either completing a pre-authorised transaction, voiding the transaction or processing a refund.

Should you use the fraud services of Wpay the fraud outcome (fraudResponse) in the payment response will give

you the outcome of the fraud decision manager check. This can be Accept, Reject or Review.

Accept: No fraud detected. Advice is that payment can proceed.

Reject: Fraud likely. Advice is that payment should be voided or refunded.

Review: Fraud potential. Payment should be manually reviewed to determine fraud decision.

Transaction Reference

Fraud Outcomes

64

Ancillary Services

65

Merchant Profile

Your merchant profile contains important information for how your merchant has been set up with Wpay and provides

details that can be utilised in subsequent service calls meaning you don't need to store the information if you do not

wish to.

cURL JavaScript

Your currently configured merchant profile with Wpay will be returned showing important information such as:

Allowed payment methods showing which payment methods are currently configured including additional details

such as the allowed bins for gift cards and the allowed networks for credit cards.

Token and key data for 3rd party payment providers such as PayPal.

View Merchant Profile

curl --location \
--request GET 'https://{{environment}}-api.wpay.com.au/wow/v1/pay/merchants/profile' \
--header 'accept: application/json' \
--header 'X-Api-Key: {{yourApiKey}}' \

Merchant Profile Outcome

66

JSON

{
 "allowedPaymentMethods": {
 "giftCard": {
 "allowedBins": [
 "600300",
 "628000"
],
 "serviceStatus": "ENABLED",
 "pinAlwaysRequired": false
 },
 "creditCard": {
 "allowedNetworks": [
 "AMEX",
 "MASTERCARD",
 "JCB",
 "VISA",
 "DINERS"
],
 "allowedTransactionTypes": [
 "PREAUTH",
 "PURCHASE"
],
 "serviceStatus": "ENABLED"
 },
 "payPal": {
 "clientToken": "ey*************************em=",
 "serviceStatus": "ENABLED"
 },
 "googlePay": {
 "publicKey": null,
 "publicKeyHash": null,
 "publicKeyExpiry": null,
 "merchantId": "11111",
 "merchantName": "Test Merchant",
 "creditCard": {
 "allowedNetworks": [
 "AMEX",
 "MASTERCARD",
 "VISA"
],
 "allowedTransactionTypes": [
 "PURCHASE",
 "PREAUTH"
]
 },
 "debitCard": {
 "allowedNetworks": [],
 "allowedTransactionTypes": [
 "PURCHASE",
 "PREAUTH"
]
 },
 "serviceStatus": "ENABLED"
 },

"applePay": {

67

Transaction History

All transactions processed through Wpay can be retrieved along with the important transaction details you or your

customer's may be interested in.

The transaction history can be retrieved for a specific customer, for all your transactions as a merchant across

customers or a specific transaction.

The transaction history lists return multiple transactions either for a specific customer or all your transactions for your

merchant. These services utilise Pagination to keep the responses quick and minimise the data returned.

The customer transaction history list will show all transactions for a specific customer.

cURL

The merchant transaction history list will show all transactions for you as a merchant across customers.

cURL

Using a transaction reference you are also able to get a single transaction and retrieve the transaction details for the

specified transaction.

The customer transaction history detail will retrieve the specified transaction for the customer and uses the bearer

token to ensure that customers do not see other customers transactions.

Transaction History List

Customer's Transaction History List

curl --location --request GET 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/customer/transactio
--header 'X-Api-Key: {{yourAPIKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \

Merchant's Transaction History List

curl --location --request GET 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/merchant/transactio
--header 'content-type: application/json' \
--header 'X-Api-Key: {{yourAPIKey}}' \

🚧 Guest Customer's Transaction History

A guest customer's transaction history will be viewable through the merchant's transaction history list &

transaction history detail API calls, however, the customer list and detail APIs will not return any transaction

history data for a specific guest user as a guest users payments are anonymous.

Transaction History Detail

Customer's Transaction History Detail

68

cURL

The merchant transaction history detail will retrieve the specified transaction for any transaction through you as the

merchant.

cURL

curl --location --request GET 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/customer/transactio
--header 'X-Api-Key: {{yourAPIKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \

Merchant's Transaction History Detail

curl --location --request GET 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/merchant/transactio
--header 'content-type: application/json' \
--header 'X-Api-Key: {{yourAPIKey}}' \

Transaction History Outcome

69

JSON

{
 "data": {
 "transactions": [
 {
 "type": "PAYMENT",
 "status": "APPROVED",
 "walletId": "28e76b0e-ee08-43cf-8cae-5bf21b3b6fbf",
 "grossAmount": 199.99,
 "instruments": [
 {
 "transactions": [
 {
 "type": "PAYMENT",
 "amount": 199.99,
 "status": "APPROVED",
 "executionTime": "2021-10-06T01:41:35.790Z",
 "paymentTransactionRef": "1000000007828200"
 }
],
 "instrumentType": "CREDIT_CARD",
 "paymentInstrumentId": "215914"
 }
],
 "executionTime": "2021-10-06T01:41:35.321Z",
 "transactionId": "33095ed8-ccdb-40eb-88f8-f937d3ee625f",
 "clientReference": "9988776655443322",
 "subTransactions": [
 {
 "fraudResponse": {
 "clientId": "6334844975146683503012",
 "decision": "REJECT",
 "reasonCode": "481"
 },
 "partialSuccess": false,
 "paymentResponses": [
 {
 "threeDS": {
 "car": null,
 "sli": null,
 "dsTransID": null
 },
 "receiptData": {
 "scheme": "VISA",
 "cardSuffix": "0608",
 "expiryYear": "23",
 "expiryMonth": "02"
 },
 "paymentToken": "aaf5f76d-1685-42f1-a046-30dea061467f",
 "externalServiceCode": "00",
 "paymentInstrumentId": "215914",
 "paymentInstrumentType": "CREDIT_CARD",
 "paymentTransactionRef": "1000000007828200",
 "externalServiceMessage": "APPROVED",
 "extendedTransactionData": [

{

70

Pagination

Where a service would return a large amount of information we've implemented pagination to keep responses quick

and reduce the amount of data that you need to handle.

By default we will limit these services to return 25 records per page however this can be configured to return as many

records as you require.

This can be done by specifying the page size and page number.

page-size is the maximum number of records per page you wish to return

page is the page number in the total returned records.

This is specified in the request URL for example:
https://{{environment}}.wpay.com.au/wow/v1/pay/instore/merchant/transactions?page-size=2&page=1

Services that support pagination will also indicate the total record count and records being viewed as part of the

metadata, e.g:

JSON

Where

recordCount is the number of records returned on the specified page

totalRecords is the total number of records which are available in the response.

"meta": {
 "recordCount": 2,
 "totalRecords": 155
 }

71

SDKs

72

Overview

Frames

Javascript

Frames SDK

View on Github

Our software development kits are extremely simple to integrate with and enable you to capture and tokenize credit

cards on your site in a safe, secure way and PCI compliant way.

Web SDK libraries

Our Frames allow you to start accepting online payments quickly and easily. It's simple to integrate into your website

checkout, accepts online payments from all major credit cards and is customisable to your brand through our styling

options.

Our frames allow your customers to capture their card payment details directly on your checkout page on your

website or in your app and are highly customisable to the look and feel of your brand.

We process these and exchange them for a secure token which you can either use as a single-use for your payments

or store this within your customer's wallet for easy checkout with saved cards.

This token will be used to request a payment, set up subscriptions and charge these subscriptions all without having

to process or store any sensitive card information yourself.

📘 ElementsSDK has been renamed to FramesSDK

Please see our changelog for more information.

Capture Card Details Securely

Frames Option

73

https://github.com/w-pay/sdk-wpay-web-frames
https://developerhub.wpay.com.au/v1.0.4/changelog

Integrate Frames

Wpay provide easy to use single line or multi line frames for you to embed into your website or app. This will allow you

to get the look and feel you want for your checkout page without sacrificing any of the functionality or security.

For more information on tokenizing a payment instrument, see Tokenizing a Payment Instrument.

For more information about how to integrate Frames into your site, see Integrate Frames.

For options on how to style and customise Frames to fit your website, see Frames Customisation and Styling.

Multi Line Frame:

Single Line Frame:

How do Frames and Tokens work?

To integrate Frames into your site there are a few steps that you need to follow:

�. Initialise the frames SDK and host the frames:

i. Define a placeholder element where the capture elements will be inserted into the page. This element needs

to have an id defined.

ii. Start a new card capture action, the action will handle all interactions with your elements such as; creation,

validation and submission. This call will need to be repeated between subsequent card captures.

iii. Create the Frames capture element by calling the createFramesControl method on the action and passing

in the element type and the id of the DOM element that you would like to attach it to.

�. Validate the captured data using events:

i. Once the user has entered their credit card details you are going to want to validate that all the captured data

is valid. To do so use the raised error events.

ii. You are also going to want to validate that all the required information has been captured. To do so use the

onBlur and onFocus events.

�. Tokenize the captured card:

i. Once you have confirmed the data is valid you will want to submit the captured information and tokenize the

card. To do this add a Submit button to the page calling the submit function on the action. This will run the

card validation and submit the form if successful.

ii. Once a card capture action has been successfully submitted you'll need to complete the action by calling the

complete method on the action.

How it works

Initialising the Frames

74

TypeScript Kotlin Swift

Where:

the package.json file should contain the following dependencies:

By default, the card will attempt to save to the customer's wallet unless otherwise specified. If you would like to

specify whether to save the card to the customer's wallet on tokenization the save property can be passed as part of

the options when initialising the capture card action.

The 'save' option can be overridden during the tokenize step should you wish to change this after the frame has

already been initialised. For example, where you provide a save check-box which the customer can select based on

their preference to save the card to their wallet for easier future check-out or not. This is done during the completion

call.

TypeScript Kotlin Swift

Instantiate the Frames

import * as frames from '@wpay/frames';

const environment = 'pt-api';
const baseUrl = `https://${environment}.wpay.com.au/wow/v1`;

const apiKey = 'YOUR-API-KEY';
const framesApiBaseUrl = `${baseUrl}/pay/instore`;
const walletApiBaseUrl = `${baseUrl}/pay`;

//Instantiate the frames SDK, this will allow us to capture user card information.
const framesSDK = new frames.FramesSDK({
 apiKey: apiKey,
 authToken: `Bearer ${authorizationToken}`,
 apiBase: framesApiBaseUrl,
 logLevel: frames.LogLevel.DEBUG
});

// Once the page has loaded, initialise a new card capture action.
action = framesSDK.createAction(frames.ActionTypes.CaptureCard);
await action.start();

 "@api-sdk-creator/axios-http-client": "^0.1.7",
 "@types/typescript": "^2.0.0",
 "@wpay/frames": "^2.0.3",
 "@wpay/sdk": "^1.8.7"

Card Capture Action Options

Save Card

framesSDK.createAction(
 frames.ActionTypes.CaptureCard,
 { save: true }
);

Verify Card

75

Card verification is the process of performing a 1c pre-auth on the card at the point of tokenizing to ensure that the

card is valid.

Card verification should be done when you are not wanting to immediately process a payment following the saving of

a card. For example, in a use case where the customer can add and remove cards from their wallet without having to

make an immediate payment.

By default, the card verification is disabled on card capture. If you would like to capture a card and enforce

verification the verify property can be passed as part of the options when initialising the capture card action.

TypeScript Kotlin Swift

An example of how to set multiple optional parameters (save and verify) when initiating the frame.

TypeScript Kotlin Swift

🚧 Verification Consumes the Step Up Token

When a 1c pre-auth verification is done as part of tokenizing a card it will consume the step up token

generated as part of the card capture. Should you try and verify a card and immediately process a payment

you will be required to capture the CVV again. Should you be processing a payment with a card

immediately after tokenizing it you should set verify to false.

framesSDK.createAction(
frames.ActionTypes.CaptureCard,

 { verify: true }
);

import * as frames from '@wpay/frames';

import { ApiTokenType } from '@wpay/sdk';
import * as frames from '@wpay/frames';

const apiKey = 'YOUR-API-KEY';
const authorizationToken: ApiTokenType = 'xxx'; // Obtained via serverside API token endpoint
const environment = 'pt-api'
const baseUrl = `https://${environment}.wpay.com.au/wow/v1`;
const framesApiBaseUrl = `${baseUrl}/pay/instore`;

//Instantiate the frames SDK, this will allow us to capture user card infromation.
const framesSDK = new frames.ElementsSDK(
 apiKey,
 `Bearer ${authorizationToken}`,
 framesApiBaseUrl,
 frames.LogLevel.DEBUG
);

framesSDK.createAction(
 frames.ActionTypes.CaptureCard,
 {
 save: true,
 verify: false
 }
);

76

The multi-line frame is actually comprised of separate elements which can be arranged as required to achieve the

desired look and feel for your site. In order, to generate the multi-line frame you will need to generate each element as

shown here:

TypeScript HTML Kotlin Swift

The single-line frame is a single element that allows credit card capture but is limited in how the fields can be

ordered. In order, to generate the single-line frame you will need to generate the card group as shown here:

TypeScript HTML Kotlin Swift

Single and multi frame card capture support autofill out of the box with out the need for the developer to do

anything extra.

When using a signed certificate on a secure site autofill will work for the Card PAN, Expiry Month and Expiry Year.

If using a card that is attached to a google pay wallet then autofill will populate the CVV.

When using a development or local insecure environment you will need to use a self signed certificate to enable

autofill to work.

The Card Capture Frames listens to onFocus and onBlur events fired from the frames SDK to display validation errors

and to provide additional information to cater for your specific use case. For example, enabling a "pay" button once

all fields are complete you need to know when controls are visited.

If you would like to listen in to these events you can do so by adding an event listener to the placeholder element in

much the same way as you do for validation. e.g.
document .getElementById('cardCaptureCardNo') .addEventListener(Frames.FramesEventType.OnBlur, () => {
// Do something onBlur });

In the below example the submit button is enabled when all the credit card fields have been visited and there is no

current validation error:

Host the Frames

Multi Line Frame:

// Link the HTML cardCapture ids: `cardCaptureCardNo`, `cardCaptureExpiry` and `cardCaptureCVV`
// with their respective frames SDK fields: `CardNo`, `CardExpiry` and `CardCVV`
action.createFramesControl('CardNo', 'cardCaptureCardNo', options);
action.createFramesControl('CardExpiry', 'cardCaptureExpiry', options);
action.createFramesControl('CardCVV', 'cardCaptureCVV', options);

Single Line Frame

// Populate the HTML placeholder div id `cardCapturePlaceholder`
// with the card capture inputs fields using the `CardGroup`
action.createFramesControl('CardGroup', 'cardCapturePlaceholder');

Autofill for Card Capture fields using Single or Multi Line Frame

Frame Events & Methods

Frames Events

77

TypeScript Kotlin Swift

Where:

import { createAxiosHttpClient } from '@api-sdk-creator/axios-http-client';
import {
 ApiTokenType, createCustomerSDK, WPayCustomerApi, WPayCustomerOptions
} from '@wpay/sdk';

const apiKey = 'YOUR-API-KEY';
const authorizationToken: ApiTokenType = 'xxx'; // Obtained via serverside API token endpoint
const environment = 'pt-api';
const walletApiBaseUrl = `https://${environment}.wpay.com.au/wow/v1/pay`;

let action: any;
let customerSDK: WPayCustomerApi;
let submitCardBtn: HTMLButtonElement;
let makePaymentBtn: HTMLButtonElement;

function setupForCardCapture() {
 //Instantiate the customer API
 const options: WPayCustomerOptions = {
 apiKey: apiKey,
 baseUrl: walletApiBaseUrl,
 accessToken: authorizationToken,
 };
 customerSDK = createCustomerSDK(createAxiosHttpClient, options);

 // Once the page has loaded, initialise a new card capture action.
 action = framesSDK.createAction(frames.ActionTypes.CaptureCard);
 await action.start();

 // Populate the placeholder div with the card capture inputs. In this case we
 // are using the 'CardGroup'
 action.createFramesControlcreateFramesControlcreateElement('CardGroup', 'cardCapturePlaceholder');

 // Add OnValidated Eventlistener which will cause the updateErrors
 // function to be called if a validation error is encoutned in the
 // frames SDK while entering a Credit Card details.
 document.getElementById('cardCapturePlaceholder')!
 .addEventListener(
 frames.FramesEventType.OnValidated,
 updateErrors
);

 // Add OnFocus Eventlistener which is fired when a field is focused in the frames SDK.
 // This enables you to know if all fields have been visited and the credit card is ready
 // for submission.
 document.getElementById('cardCapturePlaceholder')!
 .addEventListener(
 frames.FramesEventType.OnFocus,
 setVisitedStatus
);

 // Add OnBlur Eventlistener which is fired when a field is exited in the frames SDK.
 // This enables you to check for errors and visited fields to see if the credit card
 // is ready for submission.
 document.getElementById('cardCapturePlaceholder')!

.addEventListener(

78

createAxiosHttpClient is imported from the node module @api-sdk-creator/axios-http-client and is used

to create createCustomerSDK (a custom instance of the @wpay/sdk)

updateErrors is an error handling function an example implementation is provided in the Error Handling section

below.

Additional methods on the action that might be useful:

The errors method will provide a list of errors in the event validation failed on one or more of the card capture

fields.

The clear method will allow the user to clear all of the card capture fields.

These the predetermined error events that get raised from the frames SDK:

The below example shows an application of the frames validations typically applied during the card capture process

and applies logic to determine if all fields have been visited before enabling the Save button.

Frames Methods

Error Handling

Frames SDK Error
returned Error Description

Card No. Required The card number is missing.

Invalid Card No The card number is not valid and has failed length and LUHN checks.

Invalid Expiry The expiry date is invalid and does not match the required date
format.

Incomplete Expiry The expiry date is missing or incomplete.

Expired card The expiry date is in the past.

Invalid CVV The CVV is missing or invalid.

79

TypeScript Kotlin Swift

In order to tokenize a captured card, you will need to call the submit action on each of the created elements and then

call the complete action to tokenize the card.

Depending on the action options set when creating the capture action the card will tokenize and potentially perform a

1c verification and save to the customer's wallet.

Choosing whether to save the card details captured during card tokenization

const errorMap: Map<string, string> = new Map([
 ['Card No. Required', 'Please enter a valid card number.'],
 ['Invalid Card No.', 'Please enter a valid card number.'],
 ['Invalid Expiry', 'Please enter a valid expiry.'],
 ['Incomplete Expiry', 'Please enter a valid expiry'],
 ['Expired card', 'The expiry entered is in the past. Please enter a valid expiry.'],
 ['Invalid CVV', 'Please enter a valid CVV.']
]);

async function updateErrors() {
 const errors = action.errors();
 if (errors !== undefined && errors.length > 0) {
 // Display the validation error that has occurred.
 document.getElementById('cardCaptureErrors')!.innerHTML =
 `${errorMap.get(errors[0]) ? errorMap.get(errors[0]) : errors[0]}`;
 } else {
 // No validation error has occurred so clear the any error message.
 document.getElementById('cardCaptureErrors')!.innerHTML = "";
 }
}

const visitedStatus: any = {}
let enableSaveButton = false;

async function setVisitedStatus(event: any) {
 // When the cursor enters a field set the vistedStatus for this field to true.
 if (event && event.detail && event.detail.control) {
 visitedStatus[event.detail.control] = true;
 checkVisitedStatus();
 };
}

async function checkVisitedStatus() {
 const keys = ['cardNo', 'cardExpiry', 'cardCVV'];
 for (const key of keys) {
 if (!visitedStatus[key]) return;
 }
 if (action.errors() === undefined || action.errors().length === 0) {
 enableSaveButton = true;
 } else {
 enableSaveButton = false;
 }
 (document.getElementById("submitCard")! as HTMLButtonElement).disabled = !enableSaveButton;
}

Tokenize a Captured Card

80

At the point that the card is ready to be tokenized you can specify whether you wish to save the card to the

customer's wallet or not by passing in the optional save parameter to the complete action. If the optional save

parameter is not passed then the value set when initialising the card capture action will be used.

Submit Card for tokenization

TypeScript Kotlin Swift

Example of full card capture with CVV Step Up Frames Primed

TypeScript Kotlin Swift

let saveCapturedCard = false;
 await action.submit();

 //If the optional parameter saveCapturedCard is not passed,
 //the value set when initialising the card capture action will be used.
 const completeResponse = await action.complete(saveCapturedCard);

let tokenizedInstrument: any;

async function captureCard(saveCapturedCard: boolean = false) {
 //Capture the card inputted by the user
 try {
 //Submit the card capture inputs for tokenization
 await action.submit();

 //If the optional parameter saveCapturedCard is not passed it will be true by default.
 const completeResponse = await action.complete(saveCapturedCard);

 if (completeResponse.paymentInstrument) {
 //A new instrument has been tokenized
 tokenizedInstrument = {
 paymentInstrumentId:
 completeResponse.paymentInstrument.itemId,
 stepUpToken: completeResponse.stepUpToken,
 };
 } else {
 //The instrument was already found to exist
 tokenizedInstrument = {
 paymentInstrumentId: completeResponse.itemId,
 stepUpToken: completeResponse.stepUpToken,
 };
 }

 // Display the payment section
 submitCardBtn.disabled = true;
 document.getElementById('instrumentIdDisplay')!.innerText =
 tokenizedInstrument.paymentInstrumentId;
 displaySection('paymentSection');
 console.log('Instrument details: ', tokenizedInstrument);
 } catch (error) {
 console.log('Error during card capture: ', error);
 }
}

81

When a card is successfully tokenized the user will receive the new tokenized card information, should the card have

already existed in the customers wallet then the existing card information will be returned.

New Card Capture Response JSON Existing Card Capture Response JSON

The itemId can be as the tokenized instrument when making a payment. For more context you can refer to the API

guide for Making a Payment.

When utilising saved cards from your customer's wallet you will usually want them to capture their CVV and have this

CVV information included as part of the payment information. This is known as the step-up process and results in a
step up token which can be included as part of your payload when making a payment as part of your challenge

response.

Where a step up token is required your customer will need to capture their CVV as part of a their payment request.

The CVV capture will result in a step up token which is a UUID representation of the tokenized CVV which needs to be

provided as part of a payment.

{
 "status": {
 "responseText": "ACCEPTED",
 "responseCode": "00",
 "auditID": "3f9143d8-d8d1-46df-88b6-e21f0acb66f0",
 "txnTime": 1635230585570,
 "error": null,
 "esResponse": null
 },
 "paymentInstrument": {
 "itemId": "217011",
 "paymentToken": "08935b8a-4f61-46ca-9ba0-661e8474782e",
 "status": "UNVERIFIED_PERSISTENT",
 "created": 1635230585570,
 "bin": "360502",
 "suffix": "0913",
 "expiryMonth": "08",
 "expiryYear": "22",
 "nickname": "",
 "scheme": "DINERS"
 },
 "stepUpToken": "tokenise-stepup-token",
 "fraudResponse": {
 "fraudClientId": null,
 "fraudReasonCd": null,
 "fraudDecision": null
 }
}

Step Up Process

Capture CVV

Step Up Token

82

�. Start a new card step up action

�. Add the CVV element to the page

�. Create your frames element - specify the element you would like to create and the id of the dom element that you

would like to attach the element to

�. Create the Frames Controller for the CVV element

�. Submit the CVV and get the Step Up Token which can then be used to make a credit card payment

TypeScript HTML

Where:

The scheme should be returned as part of the paymentInstrument when you call the complete method during the

initial tokenisation VISA , MASTERCARD , AMEX and DINERS are all valid values.

The high-level flow is shown in the above example to capture a CVV and receive a step up token is:

Initialise a new step up action. Note that this call will need to be repeated between subsequent step up token

requests.

Adding the CVV element to the page i.e. <div id="cardCaptureCVV"></div> . Note that the SDK attaches new

elements to div placeholders within your page using the element id

📘 3DS Integration

If you are interested in 3DS2, please review 3D Secure (3DS)

How it works

/*Start a new card step up action referencing your paymentInstrumentID*/
let action = sdk.createAction(
 FRAMES.ActionTypes.StepUp,
 {
 paymentInstrumentId: <YOUR PAYMENT INSTRUMENT ID>,
 scheme: 'VISA'
 }
);
action.start();

/*This will initialise a new step up action.
This call will need to be repeated between subsequent step up token requests.*/

action.createFramesControl('CardCVV', 'cardCaptureCVV');

/* Same as in above example submit the CVV capture and make the payment */
submitCardBtn = document.getElementById('submitCard') as HTMLButtonElement;
makePaymentBtn = document.getElementById(
 'makePayment'
) as HTMLButtonElement;

// This is where action.submit() called as defined in the captureCard function above.
submitCardBtn.onclick = captureCard;

// This is where the makePayment function as defined above is linked to the button.
makePaymentBtn.onclick = makePayment;

83

Frames Customisation and Styling

After adding your placeholder you can now create your frames element. When creating an element pass in the

type of the element you would like to create and the id of the dom element that you would like to attach it to. i.e.

action.createFramesControl('CardCVV', 'cardCaptureCVV'); . Loading the page should now display the credit

card capture element, displaying card, expiry date and CVV.

Once the user has entered their CVV, you are going to want to submit and create the step-up token. To do this

add a Submit button to the page calling the submit function on the action i.e. <button onClick="async
function() { await action.submit()}">Submit</button>

Once successfully submitted an action needs to be completed. Do so by calling complete i.e. let stepUpResult
= await action.complete();

You should now have a step up token which can be used as part of Making a Payment where required. For more

context you can refer to the API guide for Making a Payment.

If you would like to see what is going on inside of the SDK, you can enable logging using the SDK constructor. Simply

set the log level you would like to see and you should be able to see the log output in the console window. The log

level is universal so applies to both the SDK and IFrame content.

Log Levels

NONE = 0,

ERROR = 50,

INFO = 100,

DEBUG = 200

Logging

In order, to ensure seamless integration with your user experience the frames controls allow for a range of styling and

customisation options. Styling can either be applied to the container via CSS or in the scenario you want to make

styling changes inside the frame the styling can be injected into the elements at run time via the options

configuration.

To customise the Frame container to better fit into your site design you can define normal CSS classes targetting the

container. An element has several classes that can be used as targets for styling:

woolies-element

container

error (only applied when the element has been validated and reported an error)

Here is an example of how one might use these classes to customise the style of the elements:

Customise the Frame container

84

CSS

If you would like to style the internal aspects of the frames elements such as font-family/style/weight you can do so

using the options object.

The options object allows you to either apply styling to all elements under the control of an action, or scope your

changes to only the elements you want to change.

For instance this example would set the height of the frame elements top 40px and apply a font size of 30 pixels to all

elements:

JavaScript

You can also style individual frames. For example, if you wanted to the text within the Card Number field to be bold

while making the other fields italic you could do so like this:

JavaScript

The cardNo element is a little unique in that it has a sub element type that is used to show an image based on card

scheme. This element can also be targeted and has an additional property allowing you to choose which side of the

element it is displayed on.

.woolies-element.container {
 border: 1px solid #d9d9d9;
 margin-left: 5px;
 padding: 5px;
}

.woolies-element.error {
 border: 1px solid #D0021B;
 background-color: #FFECEE;
}

Customising the Frames controls

let options = {
"height": "40px",

 "style": {
"fontSize": "30px"

 }
}

let options = {
 "cardNo": {
 "style": {
 "fontWeight": "bold",
 "fontStyle": "normal"
 }
 },
 "style": {
 "fontStyle": "italic"
 }
}

85

This example moves the card type to the right and sets the image width to 50px to fill out the space:

JavaScript

Sometimes you want to make customisations that can't be inlined such as; styling the placeholder text or have a

different colour on hover. You are able to do this by injecting CSS styling into the frame using the CSS property.

This example sets the placeholder colour to blue and changes it to green on hover:

JavaScript

let options = {
 "cardNo": {
 "cardType": {
 "layout": "right",
 "style": {
 "width": "50px"
 }
 }
 }
}

let options = {
 "css" : `
 input::placeholder {
 color: blue;
 }

 input:hover::placeholder {
 color: green;
 }
 `
}

86

Testing

87

Test Card Numbers

The following cards can be used to test successful purchases. To test error scenarios please see cards and scenarios

listed under error scenario test cards.

3DS test cards are specific to 3DSv2 validation, below the liability shift and response is outlined for each card in each

scenario.

❗ Scope of test cards

These test cards numbers only work if you are integrating to the APIs found here.

If you are integrating via new APIs, these test cards will not work.

Test Cards for Successful Purchases

❗ Real Cards

Genuine card numbers should not be used for testing and will produce an error in our test environment. To

simulate payments, use any of the following test card details provided in the tables below.

Scheme Number MM/YY CVV

Visa 4265581110647303 08/25 143

Visa 4265581900642308 11/25 608

Visa 4940521800534554 11/25 234

Mastercard 5128998786159203 08/25 963

Mastercard 5353181800226466 08/25 488

Mastercard 5313575350116622 12/25 123

AMEX 374245455400001 08/25 4455

AMEX 376045698745230 08/25 7788

AMEX 376445698745232 12/25 1234

Diners 36050200070913 08/25 368

Diners 36436513701486 08/25 234

3DS Test Cards

88

https://developerhub.wpay.com.au/digitalpayments/reference/post_servers-token
https://integration.wpay.com.au/reference/transactions/list-transactions

📘 Expiry and CVV

Use the card number specified in the test with the cardʼs expiration date set to the month of January and

the current year plus three. For example, for 2022, use 2025.

The CVV is not validated for 3DS

89

Scheme Number Scenario Liability
Shift 3DS Response

Visa 4456530000001005
Successful
Frictionless
Authentication

Yes OK

Mastercard 5200000000001005
Successful
Frictionless
Authentication

Yes OK

American
Express 340000000001007

Successful
Frictionless
Authentication

Yes OK

Visa 4456530000001013
Unsuccessful
Frictionless
Authentication

No AUTHENTICATION_FAILED

Mastercard 5200000000001013
Unsuccessful
Frictionless
Authentication

No AUTHENTICATION_FAILED

American
Express 340000000001015

Unsuccessful
Frictionless
Authentication

No AUTHENTICATION_FAILED

Visa 4456530000001021
Stand-In
Frictionless
Authentication

Yes OK

Mastercard 5200000000001021
Stand-In
Frictionless
Authentication

Yes OK

American
Express 340000000001023

Stand-In
Frictionless
Authentication

Yes OK

Visa 4456530000001039
Unavailable
Frictionless
Authentication

No 3DS Error:
3DS_003

Mastercard 5200000000001039
Unavailable
Frictionless
Authentication

No 3DS Error:
3DS_003

American
Express 340000000001031

Unavailable
Frictionless
Authentication

No 3DS Error:
3DS_003

Visa 4456530000001047
Rejected
Frictionless
Authentication

No AUTHENTICATION_FAILED

Mastercard 5200000000001047
Rejected
Frictionless
Authentication

No AUTHENTICATION_FAILED

American
Express 340000000001049

Rejected
Frictionless
Authentication

No AUTHENTICATION_FAILED

90

Scheme Number Scenario Liability
Shift 3DS Response

Visa 4456530000001054

Authentication not
Available on
Lookup (system
error)

No 3DS Error:
3DS_003

Mastercard 5200000000001054

Authentication not
Available on
Lookup (system
error)

No 3DS Error:
3DS_003

American
Express 340000000001056

Authentication not
Available on
Lookup (system
error)

No 3DS Error:
3DS_003

Visa 4456530000001062
Enrollment error
while attempting
authentication

No 3DS Error:
3DS_003

Mastercard 5200000000001062
Enrollment error
while attempting
authentication

No 3DS Error:
3DS_003

American
Express 340000000001064

Enrollment error
while attempting
authentication

No 3DS Error:
3DS_003

Visa 4456530000001070 Time-Out No 3DS Error:
3DS_007

Mastercard 5200000000001070 Time-Out No 3DS Error:
3DS_007

American
Express 340000000001072 Time-Out No 3DS Error:

3DS_007

Visa 4456530000001088 Bypassed
Authentication No

Mastercard 5200000000001088 Bypassed
Authentication No

American
Express 340000000001080 Bypassed

Authentication No

Visa 4456530000001096 Successful Step-
Up Authentication Yes OK

Mastercard 5200000000001096 Successful Step-
Up Authentication Yes OK

American
Express 340000000001098 Successful Step-

Up Authentication Yes OK

Visa 4456530000001104
Unsuccessful
Step-Up
Authentication

No 3DS Error:
3DS_006

Mastercard 5200000000001104 Unsuccessful
Step-Up

No 3DS Error:
3DS_006

91

Error Scenario Test Cards

Scheme Number Scenario Liability
Shift 3DS Response

Authentication

American
Express 340000000001106

Unsuccessful
Step-Up
Authentication

No 3DS Error:
3DS_006

Visa 4456530000001112 Unavailable Step-
Up Authentication No 3DS Error:

3DS_003

Mastercard 5200000000001112 Unavailable Step-
Up Authentication No 3DS Error:

3DS_003

American
Express 340000000001114 Unavailable Step-

Up Authentication No 3DS Error:
3DS_003

Subscriptions and Recurring Payments

Scheme Number MM/YY CVV Scenario

AMEX 373953192377918 11/27 1234

Active Subscription - Greater Than
$100

Inactive Subscription - Insufficient
Funds (Less Than $100)

Mastercard 5599995345720574 11/27 123

Active Subscription - Greater Than
$100

Inactive Subscription - Insufficient
Funds (Less Than $100)

Visa 4560049630217702 11/27 123

Active Subscription - Greater Than
$100

Inactive Subscription - Insufficient
Funds (Less Than $100)

The following cards can be used to test error outcomes on purchases. To test cards which will result in a successful

transaction please see cards listed under test card numbers.

❗ Scope of test cards

These test cards numbers only work if you are integrating to the APIs found here.

If you are integrating via new APIs, these test cards will not work.

92

https://developerhub.wpay.com.au/digitalpayments/reference/post_servers-token
https://integration.wpay.com.au/reference/transactions/list-transactions

Card Type Number Expiry (MM/YY) CVV Description

AMEX 373953192353000 05/26 1234 Do Not Honour

AMEX 373953192355005 04/26 1234 Lost card, Pick up

AMEX 373953192354008 03/26 1234 Suspected Fraud

AMEX 373953192377710 01/26 1234 Refer to Card Issuer

AMEX 373953192377728 02/26 1234 CVV Validation Error

AMEX 373953192377736 06/26 1234 Card Over limit

AMEX 373953192358801 07/26 1234 Insufficient funds

AMEX 373953192377777 08/26 1234 Expired card

Mastercard 5453010000011015 05/26 123 Do Not Honour

Mastercard 5453010000012013 04/26 123 Lost card, Pick up

Mastercard 5453010000013011 03/26 123 Suspected Fraud

Mastercard 5453010000017012 07/26 123 Insufficient funds

Mastercard 5453010000018887 08/26 123 Expired card

Mastercard 5453010000011072 01/26 123 Refer to Card Issuer

Mastercard 5453010000011080 02/26 123 CVV Validation Error

Mastercard 5453010000011098 06/26 123 Card Over limit

Visa 4530303000277649 05/26 123 Do Not Honour

Visa 4530303000287648 04/26 123 Lost card, Pick up

Visa 4530303000297647 03/26 123 Suspected Fraud

Visa 4530303000297688 07/26 123 Insufficient funds

Visa 4530303000288885 08/26 123 Expired card

Visa 4530303000297605 01/26 123 Refer to Card Issuer

Visa 4530303000297613 02/26 123 CVV Validation Error

Visa 4530303000297621 06/26 123 Card Over limit

Diners 36436513702500 05/26 123 Do Not Honour

Diners 36436513703508 04/26 123 Lost card, Pick up

Diners 36436513704506 03/26 123 Suspected Fraud

Diners 36436513704704 07/26 123 Insufficient funds

Diners 36436513706667 08/26 123 Expired card

Diners 36436513702559 01/26 123 Refer to Card Issuer

Diners 36436513702567 02/26 123 CVV Validation Error

Diners 36436513702575 06/26 123 Card Over limit

93

Risk Management

94

PCI Compliance

Fraud Detection

Cybersource

PCI DSS or Payment Card Industry Data Security Standards (PCI DSS) are standards for security policies,

technologies and ongoing processes. This ensures that merchants and financial institutions protect their payment

systems from breaches and theft of cardholder data.

Any organisation involved with the processing, handling and storage of card data must comply with these standards.

Wpay is certified for PCI DSS as a Level 1 Service Provider which is the highest standard set by the payment card

industry to ensure that credit card data is; processed, stored and transmitted in a secure environment.

PCI DSS compliance is a shared responsibility between your business and Wpay so whenever accepting and

transmitting card information it is important to ensure that this is done in alignment with the PCI standards.

By using one of our integration options such as our Frames and SDK's it ensures you are able to accept payments

without ever handling sensitive card data.

What is PCI DSS Compliance?

How to ensure PCI DSS Compliance

As part of our solutions, Wpay offers comprehensive fraud detection and management services to all our merchants.

With Wpay Fraud services, you can run rules during your payment transaction to identify fraud. This can help to help

reduce costs, capture revenue, and filter out risky transactions.

We partner with Sift and CyberSource to offer you a safe payment experience by keeping your business secure from

growing fraud threats. With Sift, the fraud check is performed prior to payments whilst Cybersource fraud detection

happens after payments.

📘 Fraud Services

Wpay also provides acquiring services and additional offerings to merchants who would be looking to

outsource fraud monitoring services. Talk to our customer success representative to find out more about

this.

Cybersource Decision Manager utilises machine learning capabilities to detect and prevent fraud whilst reducing

payment frictions for the good transactions. The fraud check process occurs after the payment has been processed

as the outcome of the payment will form part of the data that the Cybersource Decision Manager uses to determine if

an order may be fraudulent. Wpay passes back both the outcome of the payment and the fraud checking process to

the user. Possible fraud checking responses may be Accept, Reject, Review, or Unexpected error.

95

https://www.cybersource.com/en-ap/solutions/fraud-and-risk-management.html

The user may then determine the desired customer experience and how they wish to proceed with the transaction

based on the payment and fraud outcomes i.e. if the outcome is Reject (481) you may wish to cancel the order and

refund/void the payment.

Should you require the use of Cybersource Decision Manager, we will need to configure this for you along with any of

your merchant-specific rules during the onboarding process. Once successfully set up you can submit a request to

make a payment with the fraud payload included to trigger the fraud-checking process.

During payments or payment instrument verification where the fraud payload is present you can pass in the fraud

payload with the required fields. The fraud payload is passed as a BLOB object and can be passed as both XML or ZIP

BASE64 encoded.

Field Definition

Decision Reason
Code Description

Accept 100 No fraud detected. Advice is that payment can proceed.

Review 480 Fraud potential. Payment should be manually reviewed to
determine fraud decision.

Reject 101 The request is missing one or more fields. Resend the request
with the correct information.

Reject 102 One or more fields in the request contains invalid data.

Reject 481 Fraud likely. Advice is that payment should be voided or
refunded.

Unexpected
error UN99 Failed to perform fraud check due to unexpected error.

Fraud Payload

96

Field Description Mandatory /
Data Type

merchantID Your Cybersource merchant ID which will be
provided to you when set up with Cybersource.

Yes
String (30)

merchantReferenceCode

Unique merchant-generated order reference or
tracking number for each transaction.

Typically this would be the Client Reference you
provided as part of the payment transaction.

Yes
String (50)

Bill To - firstName The first name of the customer paying for the
good/service

Yes
String (60)

Bill To - lastName The last name of the customer paying for the
good/service

Yes
String (60)

Bill To - street1 The street address of the customer paying for the
good/service

Yes
String (60)

Bill To - city The city of the customer paying for the good/service Yes
String (50)

Bill To - state

The state of the customer paying for the
good/service.

Use the 2-3 digit ISO state code.

Yes
String (3)

Bill To - postalCode The postal code of the customer paying for the
good/service.

Yes
String (10)

Bill To - country

The country of the customer paying for the
good/service.

Use the two-character ISO country codes.

Yes
String (2)

Bill To - email The email of the customer paying for the
good/service including the full domain name.

Yes
String (255)

Bill To - ipAddress
The IP address of the customer paying for the
good/service reported by your web server using
socket information.

No
String (45)

Bill To - dateOfBirth The date of birth of the customer paying for the
good/service. Use the format: YYYYMMDD. No

Bill To - customerID

The customer identifier of the customer paying for
the good/service. This is typically the same value
provided as the shopper ID when identifying the
customer.

No

Ship To - firstName The first name of the customer receiving for the
good/service

No
String (60)

Ship To - lastName The last name of the customer receiving for the
good/service

No
String (60)

Ship To - street1 The street address of the customer receiving the
good/service

No
String (60)

Ship To - city The city of the customer receiving the good/service No

97

Field Description Mandatory /
Data Type

String (50)

Ship To - state

The state of the customer receiving the
good/service.

Use the 2-3 digit ISO state code.

No
String (3)

Ship To - postalCode The postal code of the customer receiving the
good/service.

No
String (10)

Ship To - country

The country of the customer receiving the
good/service.

Use the two-character ISO country codes.

No
String (2)

Ship To - phoneNumber

The phone number of the customer receiving the
good/service. Add the country code at the beginning
of the phone number, if possible. Otherwise, the
billing country is used to determine the country
code.
Do not use dashes, spaces,
or parentheses.

No
String (15)

Ship To - email The email of the customer receiving the
good/service.

Item - unitPrice

The unit price for the good/service being purchased.
This value cannot be negative.
You can include a decimal point
(.), but you cannot include any other special
characters.

Yes
String (15)

Item - quantity The quantity of the good/service being purchased No
Integer (10)

Item - productName The name of the good/service being purchased. No
String (255)

Item - productSKU Identification code (SKU) for the good/service being
purchased.

No
String (255)

Purchase Totals - currency The currency of the good/service being purchased.
Use the ISO currency codes.

Yes
String (5)

Purchase Totals -
grandTotalAmount

The total value of the basket/order for the
goods/services being purchased.
Must be greater than or equal to zero and must
equal the total amount of each line item including
the tax amount.

Your request must include either this field or
item_#_unitPrice.

No
Decimal (15)

merchantDefinedData -1-
60

60 available fields where merchant specific data can
be specified based on your merchant specific rules
set up with Cybersource

No

afsService run Whether to include the Cybersource afsService run
in your request. This field can be set to either true or

Yes
Boolean

98

Fraud Payload Example

An example of what the fraud payload in its XML form will look like:

Field Description Mandatory /
Data Type

false.
We suggest always setting this to true to enable
fraud scoring which is required in many rules.

deviceFingerprintID

The session ID for the fingerprint can use any string
that you are already generating, such as an order
number or web session ID.
The string can contain uppercase and lowercase
letters, digits, and these special characters: hyphen
(-) and underscore (_).

No

99

XML

Example of the fraud payload passed as part of a payment:

<?xml version="1.0" encoding="Windows-1252"?>
<RequestMessage xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi= "http://www.w3.org/2001/XMLSchema
<merchantID>woolworths_online</merchantID>
<merchantReferenceCode>18SJBB-26IO8JUN</merchantReferenceCode>

<billTo>
<firstName>Jane</firstName>
<lastName>Doe</lastName>
<street1>407 ELIZABETH STREET</street1>
<city>SURRY HILLS</city>
<state>NSW</state>
<postalCode>2199</postalCode>
<country>AU</country>
<phoneNumber>0400000000</phoneNumber>
<email>jane@doe.com.au</email>
<ipAddress>203.39.218.236</ipAddress>
<dateOfBirth>1970-01-01</dateOfBirth>
<customerID>123456</customerID>
</billTo>

<shipTo>
<firstName>Jane</firstName>
<lastName>Doe</lastName>
<phoneNumber>0400000000</phoneNumber>
<email>jane@doe.com.au</email>
</shipTo>

<item id="0">
<unitPrice>7.59</unitPrice>
<quantity>2</quantity>
<productName>Mccain Protein Plus Frozen Meal Satay Chicken</productName>
<productSKU>483660</productSKU>
 </item>
 <item id="1">
 <unitPrice>2.00</unitPrice>
 <quantity>2</quantity>
 <productName>Habee Savers Needles Household Repair</productName>
 <productSKU>159489</productSKU>
 </item>
 <item id="2">
 <unitPrice>6.60</unitPrice>
 <quantity>5</quantity>
 <productName>Chicken Breast Fillet Skinless Small</productName>
 <productSKU>118963</productSKU>
 </item>
 <item id="3">
 <unitPrice>5.43</unitPrice>
 <quantity>5</quantity>
 <productName>Chicken Drumsticks </productName>
 <productSKU>169014</productSKU>
 </item>
 <item id="4">
 <unitPrice>3.50</unitPrice>
 <quantity>4</quantity>
<productName>Chicken Thigh Cutlets Skinless</productName>

100

JSON

Example of the fraud payload passed as part of a payment:

Where:

format is the input format of the message being passed in. This can be XML or ZIP_BASE_64_ENCODED.

responseFormat is the output format in which you will receive the fraud response. This can be XML or

ZIP_BASE_64_ENCODED.

message is the fraud payload provided in a single field in the specified format.

{
 "data": {
 "transactionType": {
 "creditCard": "PREAUTH",
 "giftCard": "PURCHASE",
 "payPal": "PURCHASE",
 "googlePay": {
 "creditCard": "PREAUTH",
 "debitCard": "PURCHASE"
 },
 "applePay": {
 "creditCard": "PREAUTH",
 "debitCard": "PURCHASE"
 }
 },
 "clientReference": "UNIQUE_CLIENT_REFERENCE",
 "orderNumber": "UNIQUE_ORDER_NO",
 "payments": [
 {
 "paymentInstrumentId": "213553",
 "amount": 10.5
 },
 {
 "paymentInstrumentId": "215319",
 "amount": 6.5
 }
]
 },
 "meta": {
 "fraud": {
 "provider": "cybersource",
 "version": "CyberSourceTransaction_1.101",
 "format": "XML",
 "responseFormat": "XML",
 "message": "<?xml version=\"1.0\" encoding=\"Windows-1252\"?>\r\n<RequestMessage xmlns:xsd=\"http
 },
 "challengeResponses": [
 {
 "instrumentId": "213553",
 "type": "STEP_UP",
 "token": "55bda344-c0ec-####-####-############"
 }
]
 }
}

101

Sift

Wpay has partnered with Sift to leverage their machine learning capabilities to detect and prevent fraud. Sift makes

risk predictions using your own data and data from across Siftʼs global network to identify patterns across thousands

of device, user, network, and transactional signals.

Whilst Cybersource evaluates orders after payments, Sift Payment Protection checks for frauds before payments,

providing the flexibility for you to take actions on the transaction.

Similar to Cybersource, Sift returns three different possible fraud responses - Accept, Reject, or flagging an order for

Review.

You may then determine the desired customer experience and how you wish to proceed with the transaction based on

fraud outcomes e.g. if the outcome is Reject (481) you may wish to block the user from your store.

To utilise Sift capabilities, we will need to configure this for you along with any of your merchant-specific rules during

the onboarding process. Once successfully set up you can submit a request to make a payment with Sift fraud

payload included to trigger the fraud-checking process.

To begin using Sift as your fraud screening solution you first need to setup a Sift instance which will be specific to

your organisation. Your Wpay account management representative will be able to support you through the steps of

setting up the Sift instance as part of your integration process.

Sift uses a machine learning algorithm to perform fraud scoring for transactions. It's recommended by Sift to backfill

at least 3 - 6 months of historical data to get the best performance from the platform from day one. Sift outlines how

to complete this process on the following page. As an optional step you might also wish to backfill the decisions of

your current fraud engine. Your Wpay account management representative will be able to support you through the

steps of backfilling your historical data.

The Sift solution requires your Sift API-key to be set up in APIGEE to enable the connection between the Wpay

Platform and Sift. This step needs to be completed for both the non-PROD and PROD environments. Your Wpay

account management representative will be able to support you through the process.

Decision Reason
Code Description

Accept 100 No fraud detected. Payment to proceed after fraud check.

Review 480
Fraud potential. Payment to proceed whilst the transaction is flagged for
review in Sift. The fraud team should manually review the transaction to
determine the next course of actions to take.

Reject 481 Fraud likely. Payment blocked and a Reject response returned to you to
take further actions.

Merchant Configuration

Step 1: Create a Sift Merchant Account

Step 2: Loading historical data into Sift

Step 3: Config API Keys for Sandbox & PROD

102

https://sift.com/products/payment-protection
https://www.cybersource.com/en-ap/solutions/fraud-and-risk-management.html
https://sift.com/resources/tutorials/sending-historical-data

Once the above steps have been completed it's now time to setup your fraud rules in Sift. Your Wpay account

management representative will be able to support you through the steps configuring your fraud rules.

Now that the pre-requisite steps have been completed you are now ready to integrate with the Wpay platform to use

Sift as your fraud screening provider. The Sift payload has been designed as structured JSON with its own schema in

order to make the information easier to read by your developers.

Step 4: Configuration of the Sift Rules

📘 Fraud Rule Considerations

If you are already using an existing fraud screening provider for fraud scoring you will need to work with

your account management representative to perform an analysis to ensure your existing rules can be

imported into Sift. Alternatively, if you aren't using an existing fraud screening provider, you will need to

define and implement your fraud rules.

Step 5: Integration with the Wpay Platform

📘 Customer Experience Considerations

Merchant must also update their orchestration logic and customer experience to handle a payment

declined due to fraud before the payment occurs. Therefore, a new screen might be required to tell the

customer their payment was unsuccessful but not tipping of a potential fraudster that it was due to fraud

screening being utilised. The current process for Cybersource is post the payment being processed the

merchant can reverse the transaction by either:

�. Void the transaction, if processed as a pre-auth.

�. Refund the transaction, if processed as a purchase.

Step 6: Embed the Sift snippets

103

Description Documentation Notes

JavaScript Snippet for
all web traffic (Front-
End)

JavaScript
Snippet

Where to deploy?

On all customer facing pages on your website

Before Login

Set the $session_id field

After Login

Set the $user_id field (should match the $user_id
on REST API). Maintain the $session_id

Important

Disable the JS snippet for ALL Internal User Activity
i.e. admins, analysts making bookings/orders on
the behalf of users etc

Mobile SDK Overview Mobile SDK
Overview N/A

Mobile SDK for mobile
apps
(Front-end)

iOS SDK

Size

66 KB including dependencies

Permissions

Access to Internet (Required), Location (Optional),
Gyroscope (Optional)

OS Support

iOS 10+

Data Usage

~6kb of data per minute of active app use; App
State + Device Information Collected and Sent via
SDK
App State sent once every minute, Device Info sent
once every hour or whenver it changes

Installation

Cocoapods + Carthage Installation OR via Github
repo

Mobile SDK for mobile
apps
(Front-end)

Android SDK Size

4.5 MB total with all dependencies (3 MB without
common libraries)

Permissions

Access to Internet (Required), Fine Location
(Optional), Coarse Location (Optional)

104

https://sift.com/developers/docs/curl/javascript-api/overview
https://sift.com/developers/docs/curl/javascript-api/overview
https://sift.com/developers/docs/curl/mobile-sdk/overview
https://sift.com/developers/docs/curl/mobile-sdk/overview
https://sift.com/developers/docs/curl/mobile-sdk/ios
https://sift.com/developers/docs/curl/mobile-sdk/android

The Fraud payload for Sift will be sent as part of the payment please refer to Making a Payment.

Description Documentation Notes

OS Support

Support for Jelly Bean 4.1.x (Android API 16+)

Data Usage

Uses ~6kb of data per minute of active app use;
App State + Device Information Collected and Sent
via SDK
App State sent once every minute, Device Info sent
once every hour or whenver it changes

Installation

Maven or Jcenter Integration OR via Github repo

High Level Flow

Fraud Payload

105

Field Description Mandatory / Data Type

schemaId

The ID of the previously configured
schema that will be used to validate
the contents of the fraud payload. The
schema ID will be given back to the
merchant during their setup process.

Yes
String

sessionId The user's current session ID. No
String

orderId The ID for tracking this order in your
system.

No, but strongly
recommended to improve
fraud scoring.
String

userEmail Email of the user creating this order. No
String

amount Total transaction amount.

No, but strongly
recommended to improve
fraud scoring.
String

currency ISO-4217 currency code for the
amount.

No
String

sellerUserId The seller's user ID for marketplace. No
String

verificationPhoneNumber

Phone number of the user. This phone
number will be used to send One-Time
Password (OTP) when required. The
phone number should be in E.164
format including + and a country code.

No
String

shippingTrackingNumbers Shipping tracking number(s) for the
shipment of the product(s).

No
Array of String

billingAddress - firstName The first name of the customer paying
for the good/service

No, but strongly
recommended to improve
fraud scoring.
String

billingAddress - lastName The last name of the customer paying
for the good/service

No, but strongly
recommended to improve
fraud scoring.
String

billingAddress - email The email of the customer paying for
the good/service

No
String

billingAddress - phone

The phone number of the customer
paying for the good/service. Provide
the phone number as a string starting
with the country code. Use E.164
format or send in the standard national
format of number's origin. For
example: "+61433666666"

No
String

billingAddress -
streetAddress

The street address of the customer
paying for the good/service

No, but strongly
recommended to improve

106

https://en.wikipedia.org/wiki/ISO_4217
https://en.wikipedia.org/wiki/E.164
https://en.wikipedia.org/wiki/E.164

Field Description Mandatory / Data Type

fraud scoring.
String

billingAddress -
extendedAddress

The extended address of the customer
paying for the good/service

No
String

billingAddress - suburb The suburb of the customer paying for
the good/service

No, but strongly
recommended to improve
fraud scoring.
String

billingAddress -
stateOrTerritory

The state of the customer paying for
the good/service

No, but strongly
recommended to improve
fraud scoring.
String

billingAddress - postalCode The postal code of the customer
paying for the good/service

No, but strongly
recommended to improve
fraud scoring.
String

billingAddress -
countryCode

The country of the customer paying for
the good/service.

Use the two-character ISO-3166
country codes.

No, but strongly
recommended to improve
fraud scoring.
String

orderFrom - storeId
The customer s̓ internal identifier for
the specific physical location providing
the good or service.

No
String

orderFrom - storeAddress -
name

The full name associated with the store
address providing the good or service.

No
String

orderFrom - storeAddress -
address1

The address first line of the store
providing the good or service.

No
String

orderFrom - storeAddress -
address2

The address second line of the store
providing the good or service.

No
String

orderFrom - storeAddress -
suburb

The city of the store providing the
good or service.

No
String

orderFrom - storeAddress -
postalCode

The postal code of the store providing
the good or service.

No
String

orderFrom - storeAddress -
stateOrTerritory

The suburb of the store providing the
good or service.

No
String

orderFrom - storeAddress -
countryCode

The ISO-3166 country code of the
store providing the good or service.

No
String

orderFrom - storeAddress -
phone

The phone of the store providing the
good or service.

No
String

brandName Name of the brand of product or
service being purchased.

No
String

siteDomain Domain being interfaced with. Use fully
qualified domain name.

No
String

107

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://en.wikipedia.org/wiki/Fully_qualified_domain_name
https://en.wikipedia.org/wiki/Fully_qualified_domain_name

Field Description Mandatory / Data Type

siteCountry
Country the company is providing
service from. Use ISO-3166 country
code.

No
String

shippingAddress -
firstName

The first name associated with the
address where the product is shipped
to.

No, but strongly
recommended to improve
fraud scoring.
String

shippingAddress - lastName
The last name associated with the
address where the product is shipped
to.

No, but strongly
recommended to improve
fraud scoring.
String

shippingAddress - email
The customer's email associated with
the address where the product is
shipped to.

No
String

shippingAddress - phone
The customer's phone associated with
the address where the product is
shipped to.

No
String

shippingAddress -
streetAddress

The street address of the customer
where the product is shipped to.

No, but strongly
recommended to improve
fraud scoring.
String

shippingAddress -
extendedAddress

The extended address of the customer
where the product is shipped to.

No
String

shippingAddress - suburb The suburb of the customer where the
product is shipped to.

No, but strongly
recommended to improve
fraud scoring.
String

shippingAddress -
stateOrTerritory

The state of the customer where the
product is shipped to.

No, but strongly
recommended to improve
fraud scoring.
String

shippingAddress -
postalCode

The postal code of the customer where
the product is shipped to.

No, but strongly
recommended to improve
fraud scoring.
String

shippingAddress -
countryCode

The ISO-3166 country code of the
customer where the product is shipped
to.

No, but strongly
recommended to improve
fraud scoring.
String

expeditedShipping
A flag to indicate whether the user
requested priority/expedited shipping
on their order.

No
Boolean

shippingMethod The method of delivery to the user.

No
Allowed values:
[electronic ,
physical]

108

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Field Description Mandatory / Data Type

shippingCarrier Shipping carrier for the shipment of
the product.

No
String

shippingTrackingNumbers Shipping tracking number(s) for the
shipment of the product(s).

No
Array of String

basketData - itemId The item's unique identifier of
good/service sold by your business.

No
String

basketData - description The item description No
String

basketData - quantity The quantity of the item. No
String

basketData - price The item unit price No
String

basketData - sku If the item has a Stock-keeping Unit ID
(SKU), provide it here.

No
String

basketData - brand The brand name of the item. No
String

basketData - category
The category this item is listed under
in your business. e.g., "kitchen
appliance", "menswear > pants".

No
String

basketData - currencyCode ISO-4217 currency code for the price. No
String

basketData - upc If the item has a Universal Product
Code (UPC), provide it here.

No
String

basketData - isbn
If the item is a book with an
International Standard Book Number
(ISBN), provide it here.

No
String

basketData - manufacturer Name of the item's manufacturer. No
String

basketData - tags
The tags used to describe this item in
your business. e.g., "funny",
"halloween".

No
Array of String

basketData - color The color of the item. No
String

basketData - size The size of the item. No
String

promotion - promotionId

The ID within your system that you use
to represent this promotion. This ID is
ideally unique to the promotion across
users.

No
String

promotion - description Promotion description No
String

promotion - status Promotion status No
Allowed values

109

http://en.wikipedia.org/wiki/Stock_keeping_unit
http://en.wikipedia.org/wiki/Stock_keeping_unit
http://en.wikipedia.org/wiki/ISO_4217
http://en.wikipedia.org/wiki/Universal_Product_Code
http://en.wikipedia.org/wiki/Universal_Product_Code
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/International_Standard_Book_Number

Field Description Mandatory / Data Type

[success , failure]

promotion - failureReason Reason why adding a promotion fails.

No
Allowed values
[already_used ,
invalid_code ,
not_applicable ,
expired success`]

promotion - discount -
currencyCode

ISO-4217 currency code for the
discount amount.

No
String

promotion - discount -
percentageOff

The percentage discount. If the
discount is 10% off, you would send
"0.1".

No
String

promotion - discount -
amount

The amount of the discount that the
promotion offers.

No
String

promotion - discount -
minimumPurchaseAmount

The minimum amount someone must
spend in order for the promotion to be
applied.

No
String

mobileApp -
operatingSystem

Choose either mobileApp or browser,
not both.
The operating system on which
application is running. (e.g. iOS,
Android)

No
String

mobileApp - osVersion The operating system version on which
application is running. (e.g. 10.3.1, 7.1.1)

No
String

mobileApp -
deviceManufacturer

The manufacturer of the device on
which application is running. (e.g.
Samsung, Apple, LG)

No
String

mobileApp - deviceModel
The model of the device on which
application is running. (e.g. SM-G920x,
iPhone8,1)

No
String

mobileApp - deviceUniqueId

The unique ID of the device on which
application is running. For iOS, send
the IFV identifier. For Android, send the
Android ID.

No
String

mobileApp - appName The name of your application. No
String

mobileApp - appVersion
The version of your application. Our
accepted format is numbers separated
by periods.

No
String

mobileApp - clientLanguage

The language the application content
is being delivered in. Use ISO-3166
format for country codes. Examples:
"en", "en-us, de", "fr-CH, fr;q=0.9,
en;q=0.8, de;q=0.7, *;q=0.5", etc.

No
String

browser - userAgent Choose either mobileApp or browser,
not both.

Yes if browser is not null /
empty

110

http://en.wikipedia.org/wiki/ISO_4217
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

Fraud Payload Example

Example of the fraud payload passed as part of a payment:

Field Description Mandatory / Data Type

String

browser - acceptLanguage

The language(s) that the client is
requesting the site content be
delivered in. Use ISO-3166 format for
country codes. Examples: "en", "en-us,
de", "fr-CH, fr;q=0.9, en;q=0.8,
de;q=0.7, *;q=0.5", etc.

No
String

browser - contentLanguage

The language(s) of the user that the
delivered site content is intended for.
Use ISO-3166 format for country
codes. Examples: "en", "en-us, de",
"fr-CH, fr;q=0.9, en;q=0.8, de;q=0.7,
*;q=0.5", etc.

No
String

111

http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

JSON

Example of Fraud Response - Accept

{
 "data": {
 "transactionType": {
 "creditCard": "PREAUTH",
 "giftCard": "PURCHASE",
 "payPal": "PURCHASE",
 "googlePay": {
 "creditCard": "PREAUTH",
 "debitCard": "PURCHASE"
 },
 "applePay": {
 "creditCard": "PREAUTH",
 "debitCard": "PURCHASE"
 }
 },
 "clientReference": "ORDER-28168441",
 "orderNumber": "CUST_ORDER-123654",
 "payments": [
 {
 "paymentInstrumentId": "124****",
 "amount": 14.99
 }
]
 },
 "meta": {
 "fraud": {
 "provider": "sift",
 "version": "sift_1.101",
 "format": "JSON",
 "responseFormat": "JSON",
 "message": "",
 "payload": {
 "schemaId": "66847d9f-07c5-4647-****-************",
 "sessionId": "gigtleqddo84l8cm15qe4il",
 "orderId": "ORDER-28168441",
 "userEmail": "accept@accept.com",
 "amount": "14.99",
 "currency": "AUD",
 "billingAddress": {
 "firstName": "John",
 "lastName": "Sena",
 "email": "john.sena@mail.com",
 "phone": "0470623177",
 "extendedAddress": "4th Floor",
 "streetAddress": "407 Elizabeth Street",
 "suburb": "Surry Hills",
 "stateOrTerritory": "NSW",
 "postalCode": "2765",
 "countryCode": "AU"
 },
 "orderFrom": {
 "storeId": "1234",
 "storeAddress": {
 "name": "Toongabbie",

"address1": "15 Aurelia Street",

112

JSON

Example of Reject Fraud Response

{
 "data": {
 "transactionId": "aaff67e0-e078-42b2-****-************",
 "paymentRequestId": "f55bee99-5b75-41ad--****-************",
 "type": "PAYMENT",
 "status": "APPROVED",
 "grossAmount": 14.99,
 "executionTime": "2022-08-11T10:08:13.808Z",
 "merchantId": "WpayTestAPM",
 "merchantReferenceId": "5bhygswbhwx",
 "clientReference": "2042f2be-699e-418c-****-************",
 "fraudCheckProvider": "sift",
 "instruments": [
 {
 "paymentInstrumentId": "2499531",
 "instrumentType": "CREDIT_CARD",
 "transactions": [
 {
 "type": "PREAUTH",
 "executionTime": "2022-08-11T10:08:20.918Z",
 "paymentTransactionRef": "100000002673****",
 "status": "APPROVED",
 "amount": 14.99
 }
]
 }
],
 "subTransactions": [
 {
 "transactionReceipt": "100000002673****",
 "partialSuccess": false,
 "fraudResponse": {
 "clientId": "sift_test_acct_id",
 "riskScore": 0.5544041033169816, // risk score returned by Sift
 "reasonCode": "100",
 "decision": "ACCEPT", // Decision = ACCEPT
 "riskInformation": [
 {
 "app": "decision",
 "name": "Accept User",
 "state": "running",
 "decision": "accept_user_payment_abuse"
 },
 {
 "app": "decision",
 "name": "Accept Order",
 "state": "running",
 "decision": "accept_order_payment_abuse"
 }
]
 },
 "paymentResponses": [
 {
 "paymentInstrumentId": "249****",

"paymentToken": "3ff50323-d8aa-4188-****-************",

113

JSON

Example of Review Fraud Response

{
 "data": {
 "transactionId": "54738bcd-9160-44de-****-************",
 "paymentRequestId": "2a6c9a56-b292-4e13-****-************",
 "type": "PAYMENT",
 "status": "REJECTED",
 "rollback": "NOT_REQUIRED",
 "grossAmount": 0.01,
 "executionTime": "2022-08-11T23:50:39.262Z",
 "merchantId": "WpayTestAPM",
 "merchantReferenceId": "lvjmy6ik75",
 "clientReference": "lvjmy6ik75",
 "fraudCheckProvider": "sift",
 "instruments": [
 {
 "paymentInstrumentId": "249****",
 "instrumentType": "CREDIT_CARD",
 "transactions": []
 }
],
 "subTransactions": [
 {
 "fraudResponse": {
 "clientId": "sift_test_acct_id",
 "riskScore": 0.6722685731793858, // Fraud scoring
 "reasonCode": "481",
 "decision": "REJECT", // Decision = REJECT
 "riskInformation": [
 {
 "app": "decision",
 "name": "Block User",
 "state": "running",
 "decision": "block_user_payment_abuse"
 },
 {
 "app": "decision",
 "name": "Accept Order",
 "state": "running",
 "decision": "accept_order_payment_abuse"
 }
]
 }
 }
]
 },
 "meta": {}
}

114

JSON

{
 "data": {
 "transactionId": "0f562574-3aa9-45f9-****-************",
 "paymentRequestId": "116da4f9-1bcc-46c9-****-************",
 "type": "PAYMENT",
 "status": "APPROVED",
 "grossAmount": 0.5,
 "executionTime": "2022-08-12T02:10:55.957Z",
 "merchantId": "WpayTestAPM",
 "merchantReferenceId": "4a18dd32-efc2-4242-****-************",
 "clientReference": "010219b3-4e44-48e2-****-************",
 "fraudCheckProvider": "sift",
 "instruments": [
 {
 "paymentInstrumentId": "249****",
 "instrumentType": "APPLE_PAY",
 "transactions": [
 {
 "type": "PREAUTH",
 "executionTime": "2022-08-12T02:10:57.728Z",
 "paymentTransactionRef": "100000002674****",
 "status": "APPROVED",
 "amount": 0.5
 }
]
 }
],
 "subTransactions": [
 {
 "transactionReceipt": "100000002674****",
 "partialSuccess": false,
 "fraudResponse": {
 "clientId": "sift_test_acct_id",
 "riskScore": 0.6492781559924097, // Risk scoring
 "reasonCode": "480",
 "decision": "REVIEW", // Decision = REVIEW
 "riskInformation": [
 {
 "app": "review queue",
 "name": "Manual Review - User",
 "state": "running",
 "decision": "review"
 },
 {
 "app": "review queue",
 "name": "Manual Review - Order",
 "state": "running",
 "decision": "review"
 }
]
 },
 "paymentResponses": [
 {
 "paymentInstrumentId": "249****",

"paymentToken": "affc24b1-3a03-4209-****-************",

115

3D Secure (3DS)

3DS helps prevent fraud for online payments where a card is not physically present. Customers are quickly verified

providing a fast and secure payment experience. By enabling the service you receive additional protection against

customer disputes and chargebacks for fraud.

3DS version 2 has introduced a significant improvement in the customer experience in comparison to the older 3DS

version 1. In most cases, a transaction can be frictionlessly verified without any further customer interaction by using

additional data about the customer and card that was not available as part of 3DSv1. However, some transactions

cannot be completed frictionlessly, in this case, the customer's card issuer will instruct Wpay to actively verify the

customer through what is called challenge verification.

Wpay supports 3DSv2 for American Express, Mastercard and Visa. The 3DS brand acceptance marks of these

schemes can be found in the following location:

American Express

Mastercard

Visa

The primary benefit for merchants using 3DS is a liability shift. Once a customer has been verified using 3DS (either

via the frictionless or challenge flow) the card issuer holds liability for the transaction.

Should a transaction be fraudulent the card issuer is responsible as they have verified their cardholder through this

process.

The majority of transactions follow this path, a customer and their transaction is verified and authenticated behind the

scenes between Wpay and the customer's card issuer. The customer often isn't even aware additional verification has

taken place.

If a card Issuer determines the transaction risk to be above a certain threshold they may request additional

authentication from the customer. The exact step-up mechanism is controlled by the issuer and common methods

include:

biometric via banking apps

one time passcode via SMS or email

What is 3D Secure

📘 Merchant configuration required

In order to use 3DS with Wpay your merchant needs to be configured & enabled for 3DS within our system.

Please contact us to have your merchant set up.

Liability shift

Frictionless flow

Challenge flow

116

https://network.americanexpress.com/globalnetwork/products-and-services/security/safekey/
https://brand.mastercard.com/brandcenter/artwork/other-marks.html
https://www.merchantsignage.visa.com/brand_guidelines
https://www.wpay.com.au/content/mep/au/en/get-in-touch.html

3DS Payment Integration

The challenge flow is invoked for a minority of transactions.

WPay supports the following versions of 3DS

2.1.0

2.2.0

�. When a customer is ready to checkout they pay using their card.

�. We take information about the transaction and send this to the cardʼs issuer for authentication.

�. The Issuerʼs 3DS provider determines transaction risk.

�. If the risk is low, the transaction is marked as verified (frictionlessly) and authentication is complete

�. If the risk is higher, the Issuer may prompt the cardholder to verify their identity (challenge flow), once verified

the authentication is complete

�. The payment is processed to the card schemes with the authentication results and liability is shifted to the issuer.

�. Upon successful authentication, we submit the transaction for processing.

What version of 3DS do we support

How does it work

3DS Payment Authentication allows you to authenticate a payment request using 3DS. This guide will outline the

requirements for authenticating a payment using 3DS through Wpay and will highlight where the 3DS payment flow

and information differs from the normal guide for Making a Payment.

The typical flow for making a payment with 3DS authentication is as follows:

Step 1 - Make a Payment Request:

�. Ensure you have a payment instrument obtained either from the customer's wallet (for saved instruments) or from

tokenizing a payment instrument (for new instruments) which is supported for 3DS authentication.

�. Make a payment request and include the requires3DS flag in the payment request to indicate that you wish to

apply 3DS authentication to the payment

�. Check the payment response to determine if 3DS authentication is required as part of the payment.

i. Should the outcome of the payment provide an error outcome indicating 3DS TOKEN REQUIRED then you will

need to authenticate the payment via 3DS utilising the Frames SDK. See Step 2.

Step 2 - Request 3DS Authentication:

�. Utilizing the Frames SDK request 3DS authentication for the requested payment. The outcome of the 3DS

authentication will either be frictionless or a challenge required.

�. Should the 3DS process be successful you will be provided with the 3DS token and reference data which will

be required when making the subsequent payment request.

Step 3 - Make a Final Payment Request including the 3DS Data:

�. Include the requires3DS flag as well as the 3DS token and reference data in the payment request and

process the payment

117

�. The 3DS data will be authenticated with the issuer to ensure that it is valid and the payment will then be

processed.

Make a payment request and include the merchantPayload and set the requires3DS flag to true.

JSON

1. Make a Payment Request

1.1. Request Payment with 3DS Authentication

Example of required merchantPayload :

"merchantPayload": {
 "payload": {
 "requires3DS": true
 },
 "schemaId": "0a221353-b26c-4848-9a77-4a8bcbacf228"
}

Example of payment request with included merchantPayload :

118

cURL JavaScript

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/customer/payments
--header 'X-Api-Key: {{yourAPIKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--header 'x-guest: false' \
--header 'Content-Type: application/json' \
--data-raw '{
 "data": {
 "transactionType": {
 "creditCard": "PREAUTH",
 "giftCard": "PURCHASE",
 "payPal": "PURCHASE",
 "googlePay": {
 "creditCard": "PREAUTH",
 "debitCard": "PURCHASE"
 },
 "applePay": {
 "creditCard": "PREAUTH",
 "debitCard": "PURCHASE"
 }
 },
 "merchantPayload": {
 "payload": {
 "requires3DS": true
 },
 "schemaId": "0a221353-b26c-4848-9a77-4a8bcbacf228"
 },
 "clientReference": "UNIQUE_CLIENT_REFERENCE",
 "orderNumber": "UNIQUE_ORDER_NO",
 "payments": [
 {
 "paymentInstrumentId": "213553",
 "amount": 10.5
 },
 {
 "paymentInstrumentId": "215319",
 "amount": 6.5
 }
]
 },
 "meta": {
 "fraud": {
 "provider": "cybersource",
 "version": "CyberSourceTransaction_1.101",
 "format": "XML",
 "responseFormat": "XML",
 "message": "<?xml version=\"1.0\" encoding=\"Windows-1252\"?>\r\n<RequestMessage xmlns:xsd=\"http
 },
 "challengeResponses": [
 {
 "instrumentId": "213553",
 "type": "STEP_UP",
 "token": "55bda344-c0ec-####-####-############"
 }
]
}

1.2. Check Payment Response to Determine if 3DS Authentication is Required

119

JSON

Where:

The "errorCode": "3DS_001" indicate that a 3DS token is required and that 3DS authentication should be

requested.

The threeDS - sessionId is required when completing authentication via 3DS in the next step.

Using the sessionId obtained in the previous step you will use the Wpay Frames SDK to request 3DS authentication

from your customer's issuing bank.

{
 "data": {
 "transactionId": "9b8e30bb-c8bb-4762-8a47-2233e59c21d7",
 "paymentRequestId": "1037fca0-9118-4664-9f63-696ecbcfe44d",
 "type": "PAYMENT",
 "status": "REJECTED",
 "rollback": "NOT_REQUIRED",
 "grossAmount": 50.5,
 "executionTime": "2022-02-21T08:51:54.908Z",
 "merchantReferenceId": "82799438",
 "clientReference": "80085011",
 "instruments": [
 {
 "paymentInstrumentId": "2159648",
 "instrumentType": "CREDIT_CARD",
 "transactions": []
 }
],
 "subTransactions": [
 {
 "errorCode": "3DS_001",
 "errorMessage": "3DS TOKEN REQUIRED",
 "threeDS": {
 "paymentInstrumentId": "2159648",
 "sessionId": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiIxMDM3ZmNhMC05MTE4LTQ2Nj
 }
 }
]
 },
 "meta": {}
}

2. Request 3DS2 Authentication

120

JavaScript

Where:

cardCaptureResponse.errorCode will show any errors encoutered during 3DS authentication as defined in the

section Error Codes

Usually a customer will be authenticated frictionlessly meaning that no customer authentication is required, however

in some cases the card issuer may require additional authentication. In this case a challenge-response is requested

from the customer. This usually takes the form of an OTP via SMS.

Where a challenge-response is generated from the customer's issuer you will render a 3DS Challenge Model. While

the content is controlled by the issuer there are some modifications that can be made to better fit this model into your

existing CX.

The Model can be controlled in a couple of ways, size and the spinner.

if (paymentResponse.status === 'APPROVED') {
 paymentComplete = true;
 paymentStatus = 'Payment Complete';
} else {
 // If error code is 3DS_001 then failure was due to a 3DS challenge
 if (paymentResponse.subTransactions[0].errorCode === '3DS_001') {
 const sessionId = paymentResponse.subTransactions[0].threeDS.sessionId;

 // Perform 3DS authentication
 const threeDSResponse = await capture3DS(sessionId, this.selectedInstrument, FRAMES.ActionTypes.Valid

 if (threeDSResponse.threeDSData &&
 (threeDSResponse.threeDSData.status === 'AUTHENTICATION_SUCCESSFUL' ||
 threeDSResponse.threeDSData.ActionCode === 'SUCCESS')) {
 challengeResponses.push(
 threeDSResponse.challengeResponse,
);
 } else {
 paymentFailed = true;

 this.paymentStatus =
 (threeDSResponse.threeDSData && threeDSResponse.threeDSData.Payment &&
 threeDSResponse.threeDSData.Payment.ExtendedData &&
 threeDSResponse.threeDSData.Payment.ExtendedData.ChallengeCancel === '01') ?
 'Payment Failed - 3DS verification cancelled by user' :
 'Payment Failed - 3DS verification failed';
 }
 } else {
 paymentFailed = true;
 paymentStatus = 'Payment Failed';
 }
}

2.1. Authenticate payment via 3DS

Controlling the visibility of the 3DS Challenge Model.

121

JavaScript HTML CSS

Where:

let showSpinner = true;

private async capture3DS(sessionId, paymentInstrumentId, actionType) {
 const enrollmentRequest = {
 sessionId,
 paymentInstrumentId,
 threeDS: {
 consumerAuthenticationInformation: {
 acsWindowSize: settings.customer.acsWindowSize,
 },
 },
 };

 // Create a new payment validation frames action
 const action = framesSDK.createAction(actionType, enrollmentRequest);

 // Start the action, creating a new JWT and initialising cardinal
 await action.start();

 // Set the placeholder for the challenge IFrame to be injected
 action.createFramesControl('3DSValidation', 'overlay');

 const elementHandle = document.getElementById('overlay');

 const renderEventListener = () => {
 this.showSpinner = false;
 this.show3DS = true;
 };

 const closeEventListener = () => {
 this.showSpinner = true;
 this.show3DS = false;
 };

 // Add the event listeners for OnRender and OnClose for the 3DS challenge response
 elementHandle.addEventListener(FRAMES.FramesCardinalEventType.OnRender, renderEventListener);
 elementHandle.addEventListener(FRAMES.FramesCardinalEventType.OnClose, closeEventListener);

 // Check card enrolment, allowing cardinal show issuer challenge
 const authorizationResponse = await action.complete();

 // Romove the event listeners for OnRender and OnClose for the 3DS challenge response
 elementHandle.removeEventListener(FRAMES.FramesCardinalEventType.OnRender, renderEventListener);
 elementHandle.removeEventListener(FRAMES.FramesCardinalEventType.OnClose, closeEventListener);

 // 3DS check complete, use returned information to provide a challenge response within the payment endp
 console.log(`3DS authorization complete: ${JSON.stringify(authorizationResponse)}`);

 if (actionType === FRAMES.ActionTypes.ValidatePayment) {
 paymentAuthentication = authorizationResponse;
 } else if (actionType === FRAMES.ActionTypes.ValidateCard) {
 cardValidation = authorizationResponse;
 }

return authorizationResponse;

122

acsWindowSize allows you to control the size of the 3DS challenge window and has values defined in the FAQs

After validation of the card entered by the user the showSpinner is set to try showing a spinner while we wait for

the issuer to return

When action.complete is called and the renderEventListener is fired, causing:

the showSpinner to be set to false , causing this spinner to be hidden and

the show3DS variable will be set to true , causing the Challenge Response Modal to be displayed like the one

shown below:

Sample 3DS2 OTP screen for a $12 payment

Once the challenge is authenticated (in the above example this means the one time password that has been texted to

the customer is entered and submitted), the closeEventListener is fired, setting the show3DS variable to false

hiding the challenge-response iFrame.

Below is an example of the response from the 3DS authentication request made through the Frames SDK. You can

take the response as is and use it when making a payment as part of the challengeResponses array in the next step.

JSON

Now that we've completed our 3DS authentication we can add the required 3DS data to the challengeResponses and

attempt to reprocess the payment.

Show the 3DS payment challenge response modal

Example of 3DS Challenge Response:

{
 "type": "3DS-frictionless",
 "instrumentId": "213553",
 "token": "{{challengeResponseToken}}",
 "reference": "{{ServerJWT}}"
}

3. Make a Final Payment Request including the 3DS Data

123

cURL JavaScript

Where:

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/instore/customer/payments
--header 'X-Api-Key: {{yourAPIKey}}' \
--header 'Authorization: Bearer {{yourBearerToken}}' \
--header 'x-guest: false' \
--header 'Content-Type: application/json' \
--data-raw '{
 "data": {
 "transactionType": {
 "creditCard": "PREAUTH",
 "giftCard": "PURCHASE",
 "payPal": "PURCHASE",
 "googlePay": {
 "creditCard": "PREAUTH",
 "debitCard": "PURCHASE"
 },
 "applePay": {
 "creditCard": "PREAUTH",
 "debitCard": "PURCHASE"
 }
 },
 "merchantPayload": {
 "payload": {
 "requires3DS": true
 },
 "schemaId": "0a221353-b26c-4848-9a77-4a8bcbacf228"
 },
 "clientReference": "UNIQUE_CLIENT_REFERENCE",
 "orderNumber": "UNIQUE_ORDER_NO",
 "payments": [
 {
 "paymentInstrumentId": "213553",
 "amount": 10.5
 },
 {
 "paymentInstrumentId": "215319",
 "amount": 6.5
 }
]
 },
 "meta": {
 "fraud": {
 "provider": "cybersource",
 "version": "CyberSourceTransaction_1.101",
 "format": "XML",
 "responseFormat": "XML",
 "message": "<?xml version=\"1.0\" encoding=\"Windows-1252\"?>\r\n<RequestMessage xmlns:xsd=\"http
 },
 "challengeResponses": [
 {
 "instrumentId": "213553",
 "type": "STEP_UP",
 "token": "55bda344-c0ec-####-####-############"
 },
 {

"type": "3DS-frictionless",

124

type is either 3DS or 3DS-frictionless depending on whether the frictionless or normal 3DS authenticationflow

was applied.

token is the challengeResponseToken received from the 3DS authentication

reference is the ServerJWT received from the 3DS authentication

Should the payment be successful you will receive an approved payment. The only difference between the payment

response for a successful payment made with vs without a 3DS authenticationis the inclusion of the threeDSData as

part of the response payload.

3DS Payment Success Response

125

JSON

{
 "paymentRequest": {
 "expiryTime": "2021-11-17T08:27:32.309Z",
 "grossAmount": 12.4,
 "usesRemaining": 1,
 "merchantPayload": {
 "payload": {
 "requires3DS": true
 },
 "schemaId": "0a221353-b26c-4848-9a77-4a8bcbacf228"
 },
 "paymentRequestId": "cdbf72ab-03f6-4445-98dc-ec79bce91f17",
 "merchantReferenceId": "9c92a1f2-89c2-47f4-a1d5-dafe6e89bb50"
 },
 "cardValidation": {},
 "cardCapture": {},
 "paymentAuthentication": {
 "threeDSData": {
 "id": "6371373770786754404005",
 "submitTimeUtc": "2021-11-17T08:22:57Z",
 "status": "AUTHENTICATION_SUCCESSFUL",
 "clientReferenceInformation": {
 "code": "cdbf72ab-03f6-4445-98dc-ec79bce91f17"
 },
 "consumerAuthenticationInformation": {
 "acsTransactionId": "f3166c8b-f4c7-484e-99d8-f153fcd14976",
 "authenticationTransactionId": "UsFCe2c0h6cmh8S94sg0",
 "ecommerceIndicator": "spa",
 "eciRaw": "02",
 "paresStatus": "Y",
 "specificationVersion": "2.2.0",
 "threeDSServerTransactionId": "c271835d-d874-413b-846b-17b481bba171",
 "ucafAuthenticationData": "Y2FyZGluYWxjb21tZXJjZWF1dGg=",
 "ucafCollectionIndicator": "2",
 "veresEnrolled": "Y",
 "directoryServerTransactionId": "25050f2a-752d-4b7c-a2c8-7c0e8a379e17"
 }
 },
 "challengeResponse": {
 "type": "3DS-frictionless",
 "instrumentId": "1506694",
 "token": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiJjZGJmNzJhYi0wM2Y2LTQ0NDUtOThkYy1lYz
 "reference": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiJjZGJmNzJhYi0wM2Y2LTQ0NDUtOThkYy
 }
 },
 "transactions": [
 {
 "type": "PAYMENT",
 "status": "APPROVED",
 "merchantId": "petculture",
 "grossAmount": 12.4,
 "instruments": [
 {
 "transactions": [

{

3DS Payment Error Response

126

3DS Card Capture Integration

Should an error occur either due to payment validation or due to 3DS an error response will be returned as per the

below:

JSON

Where

errorCode will give the error received during the payment request. A full list of error codes can be found here.

errorMessage will give a description of the error received.

A set of 3DS specific test cards are available to validate the full range of results available from issuers

The list of 3DS error codes are listed here

3DS information (e.g. frame sizing) is included on our FAQs

{
 "data": {
 "transactionId": "9b8e30bb-c8bb-4762-8a47-2233e59c21d7",
 "paymentRequestId": "1037fca0-9118-4664-9f63-696ecbcfe44d",
 "type": "PAYMENT",
 "status": "REJECTED",
 "rollback": "NOT_REQUIRED",
 "grossAmount": 50.5,
 "executionTime": "2022-02-21T08:51:54.908Z",
 "merchantReferenceId": "82799438",
 "clientReference": "80085011",
 "instruments": [
 {
 "paymentInstrumentId": "2159648",
 "instrumentType": "CREDIT_CARD",
 "transactions": []
 }
],
 "subTransactions": [
 {
 "errorCode": "3DS_001",
 "errorMessage": "3DS TOKEN REQUIRED",
 "threeDS": {
 "paymentInstrumentId": "2159648",
 "sessionId": "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJqdGkiOiIxMDM3ZmNhMC05MTE4LTQ2Nj
 }
 }
]
 },
 "meta": {}
}

Additional Information

3DS Card Capture allows you to have 3DS Authentication performed prior to saving the card into the Customer Wallet

for future use.

Steps involved in performing a card capture include:

127

�. Create a 3DS enabled card capture action

�. Perform initial card capture

�. Check card capture response

3.1 If we require 3DS, the the action will fail with 3DS_001

3.1.1 Perform 3DS Card Capture

In order to provide the 3DS evidence to the tokenisation process, we need to capture 3DS

3.1.2 If 3DS capture was successful we will have a challenge response,

3.1.3 If 3DS capture was unsuccessful there is no point trying to tokenise again.

3.2 If we have an paymentInstrumentId then the capture was successful

�. Perform 3DS Card Capture

4.1 Control the visibility of the spinner and 3DS challenge response modal

4.2 Show the 3DS Card Capture challenge response

To initialise a 3DS card capture for a non-frictionless card you specify a threeDS option when creating the

CaptureCard action via the Frames SDK as shown in the code snippet below:

JavaScript TypeScript

The card capture and iFrame validation of card fields follow the same steps as documented in our iFrames integration

guide: Host the Frames

The difference is that the response from the cardCaptureAction.complete() is tested to see whether a 3DS card

capture is required:

1. Create a 3DS enabled card capture action

import * as FRAMES from '@wpay/frames';

const framesSDK = new FRAMES.FramesSDK(
 {
 apiKey: process.env.VUE_APP_API_KEY,
 authToken: process.env.VUE_APP_ACCESS_TOKEN,
 apiBase: `${process.env.VUE_APP_BASE_URL}/instore`,
 logLevel: FRAMES.LogLevel.DEBUG,
 },
);

const captureCardAction = framesSDK.createAction(
 FRAMES.ActionTypes.CaptureCard,
 {
 verify: false,
 save: true,
 threeDS: {
 requires3DS: true,
 },
 },
);

2. Perform initial card capture

128

https://developerhub.wpay.com.au/docs/integrate-frames-into-your-site#host-the-frames

HTML CSS JavaScript TypeScript

JavaScript TypeScript

Where:

cardCaptureResponse.errorCode has values as defined in the section 3DS error codes

saveCard is a boolean value of true to save the card, false to not save the card or undefined if the we want

to use the value set when initialising the card caption action

Controlling the visibility of the 3DS Card Capture Challenge Response Model. After validation of the card entered by

the user the showSpinner is set to try showing the spinner.

<div class="container">

 <!-- Card Capture iFrame place holder -->
 <div id="cardGroupPlaceholder"></div>

</div

3. Check card capture response

// Intialise value of the card capture success return variable
let preconditionsMet = false;

// 3.1 If we require 3DS, the the action will fail with 3DS_001
if (cardCaptureResponse.errorCode === '3DS_001') {

 // 3.1.1 Perform 3DS Card Capture
 // In order to provide the 3DS evidence to the tokenisation process, we need to capture 3DS
 const authorizationResponse =
 await capture3DS(
 cardCaptureResponse.token,
 selectedInstrument,
 FRAMES.ActionTypes.ValidateCard);

 // 3.1.2 If 3DS capture was successful we will have a challenge response,
 if (authorizationResponse.challengeResponse) {
 cardCaptureResponse =
 await captureCardAction.complete(
 saveCard, [authorizationResponse.challengeResponse]);
 preconditionsMet = true;
 } else {

 // 3.1.3 If 3DS capture was unsuccessful there is no point trying to tokenise again.
 paymentStatus = 'Payment Failed - There was an issue during card capture';
 }
} else if (cardCaptureResponse.itemId || cardCaptureResponse.paymentInstrument.itemId) {

 // 3.2 If we have an paymentInstrumentId then the capture was successful
 preconditionsMet = true;
}

4. Perform 3DS Card Capture

4.1 Control the visibility of the spinner and 3DS challenge response modal

129

HTML CSS JavaScript TypeScript

where:

acsWindowSize has values defined in What are the 3DS Model challenge response screen size values ?

When action.complete is called and the renderEventListener is fired, causing:

the showSpinner to be set to false , causing this spinner to be hidden and

the show3DS variable will be set to true , causing the Challenge Response Modal to be displayed like the one

shown below:

Sample 3DS2 OTP screen for card capture (hence the $0.00)

Once the challenge is validated (in the above example this means the one time password that has been texted to the

customer is entered and submitted) , the closeEventListener is fired, setting the show3DS variable to false hiding

the challenge response iFrame.

<div class="container">
 <!--
 3DS iFrame Challenge response placeholer.
 Includes a Vue.js class which controls the visible of this model,
 based on the value of the show3DS variable.
 -->
 <div
 id="overlay"
 class="overlay"
 style=""
 v-bind:class="{ hidden: !this.show3DS }">
 </div>

 <!-- Card Capture iFrame place holder -->
 <div id="cardGroupPlaceholder"></div>

 <!--
 Display the Spinner component, when
 the paymentDisabled variable is true or
 the showSpinner variable is true.
 -->
 <div class="processing"
 v-bind:class="{ hidden: !this.paymentDisabled || this.showSpinner === false }">
 <Spinner/>
 </div>
</div>

4.2 Show the 3DS Card Capture challenge response modal

130

PayPal Seller Protection

A set of 3DS specific test cards are available to validate the full range of results available from issuers

The list of 3DS error codes are listed here

3DS information (e.g. frame sizing) is included on our FAQs

Additional Information

PayPal Seller Protection ensures your eligible sales are protected against unauthorised payments and transactions

reversed due to suspicion of fraud. If a buyer claims they didnʼt receive an item, your eligible sale is protected when

you provide proof of shipment or fulfilment. [1]

�. Merchant's website to get the clientToken from the merchantʼs profile.

�. Merchant's website to send TransactionRiskContext request to a new API endpoint to get ClientMetadataId .

In the backend, Wpay will forward the request to PayPal.

�. Merchant's website then generates device data using ClientMerchantID via the device data collector in BT

Client SDK.

�. The other process to generate a Checkout instance, PayPal tokenization to get Nonce from PayPal and

Tokenization process with Wpay remain the same.

�. When making a payment, the device data string will be added to the existing Making a Payment request

payload to connect the payment transaction with TransactionRiskContext required for PayPal seller's

protection.

Below are the data attributes that you are required to provide Wpay so they can be passed to PayPal so Seller

Protection can be applied to the transaction.

High Level Flow

How it works

Required Data Attributes

131

https://www.paypal.com/au/webapps/mpp/paypal-seller-protection

📘 Fields to be passed

PayPal advises to pass as many fields as possible to increase the effectiveness of their risk algorithms for

PayPal Seller Protection.

Sender Profile - The fields in this section don't need to be included in the data transmission if either of

these conditions exists:

The merchant does not require the user to create a merchant account; that is, the user can perform the

transaction through a "Guest Checkout" OR

The merchant offers PayPal at the cart as a "Shortcut" or as "Checkout with PayPal", so that PayPal

provides all the consumer information.

Delivery Information - This field is required for intangible goods only; otherwise, optional

132

Data Field Name Description Data
Type Format Sample

sender_account_id

Unique identifier of
the buyer account on
the partner / merchant
platform

string Alphanumeric A12345N343

sender_first_name

First name registered
with the buyer's
partner/merchant
account

string Alphanumeric John

sender_last_name

Last name registered
with the buyer's
partner/merchant
account

string Alphanumeric Smith

sender_email

Email address
registered with the
buyer's
partner/merchant
account

string E.123 - Email
Address john@sample.com

sender_phone

Phone number
(national notation)
registered with the
buyer's
partner/merchant
account

string

E.123 -
Telephone
Number
(National
Notation)

(042) 1123 4567

sender_country_code

Country code
registered with the
buyer's
partner/merchant
account

string ISO Alpha-2
Country Code US

sender_create_date

Date of creation of the
buyer's account on
the partner/merchant
platform

date ISO 8601 date
format

2012-12-
09T19�14�55.277-
0�00

dg_delivery_method

Delivery method for
an intangible item if
there is an associated
email/phone. It acts as
the shipping address
for an intangible.

string {email, phone} email

highrisk_txn_flag

Flag for high-risk
items such as gift
cards / anything cash
equivalent

Boolean Boolean (0 or
1) 0

vertical

Transaction level
vertical flag for
partner/merchant's
transactions that are
in several verticals

string Alphanumeric Retail

133

mailto:john@sample.com

To retrieve the ClientMetadataId use the createtransactionriskcontext endpoint to generate the

TransactionRiskContext and send this information to Wpay who will retrieve this value on your behalf from PayPal.

cURL JavaScript Swift Kotlin

TransactionRiskContext Response

JSON

To make a payment using PayPal Seller Protection using the Wpay Platform please follow Making a Payment

�. PayPal Seller Protection

Retrieving the ClientMetadataID

curl --location --request POST 'https://{{environment}}.wpay.com.au/wow/v1/pay/paypal/createtransactionri
--header 'x-api-key: {{yourApiKey}}' \
--header 'authorization: Bearer {{yourBearerToken}}' \
--header 'Content-Type: application/json' \
--data-raw '{
 "senderAccountId":"A123N23424",
 "senderFirstName":"John",
 "senderLastName":"Smith",
 "senderEmail":"John@sample.com",
 "senderPhone":"0444444444",
 "senderCountryCode":"AU",
 "senderCreateDate":"2022-06-09T02:01:41.041Z",
 "dgDeliveryMethod":"email",
 "highriskTxnFlag":true,
 "vertical":"Retail"
}'

{
 "clientMetadataId": "082029267ff97ffed8c089*********"
}

Making a Payment

References

134

https://www.paypal.com/au/webapps/mpp/paypal-seller-protection

Support

135

Glossary

FAQs

We've provided the key terms used throughout the documentation for easy reference.

Term Description

API Key The X-Api-Key which is provided in the API headers is used to uniquely identify you
as a merchant in our system. This key is highly sensitive and should be kept safe.

Bearer Token
A Bearer Token is an obfuscated string (not intended to have any meaning to clients
using it). Some servers will issue tokens that are a short string of hexadecimal
characters, while others may use structured tokens such as JSON Web tokens.

Payment
Token

The payment token is a way to uniquely and securely identify a payment instrument
which has been stored in the vault. Payment tokens are automatically issued during
the tokenization process and will be used when processing payments, setting up
payment agreements etc in place of sensitive card data.

Payment
Instrument

A payment instrument when referred to throughout our guides and references is
used for any payment method which has been tokenized.

For example Credit Cards, Gift Cards and PayPal are all considered Payment
Instruments.

Step Up
Token

A step up token is a temporary unique and secure reference to a captured CVV. As
per PCI DSS we are not allowed to store CVV details in our vault so where you as a
merchant require a CVV to be captured for credit card payments we will return a
step up token which should be used when making the payment.

Please note that step up tokens are single use and once used to attempt to process
a payment will be deleted and a new Step Up Token will be required.

No, due to PCI-DSS compliance it is required that all handling of the credit card information is done through the

iFrames.

Rate limiting is applied to many of our critical API's including our tokenizing, payments, gift card balance checks, and

iFrame initialization services. These services are limited to 8 requests per customer per minute, meaning that a single

customer on your site cannot process more than 8 requests for the same API within 60 seconds. We may set these

rate limits to prevent system abuse, however, these can be adjusted based on your needs for your merchant.

It is preferable that the API key is not exposed to the public through front-end apps for security reasons. The common

way is using a back-end server as a relay to fetch the API results and pass them on to your front-end. If for some

reason you have to make an API call from the front end, there are ways to hide the API keys like keeping them as

environment variables.

Can we tokenize a credit or debit card without the iframes?

Are any rate limits applied to your API's?

Is it safe to expose your API key in the front end application / browser?

136

Error Codes

Wpay uses a combination of the API Key, Bearer Tokens and IP Whitelisting for security measures. When you sign up

with us and receive the API keys, you also need to specify a list of IPs that are authorized to be used with this key.

Therefore, even if your API key is found or stolen, only your servers will be able to use it.

The screen size value acsWindowSize which is past to Cardinal for the size of the iFrame modal challenge response.

What are the 3DS Model challenge response screen size values?

Value Size

01 250x400

02 390x400

03 500x600

04 600x400

05 Full Page

High Level Error Codes

HTTP Status Code Error
Code Error Detail

200 - OK NA The request was successful.

400 - Bad Request
AP99
RV##
BI##

Bad input data was received

401 - Unauthorised AP01
AP02 Invalid API Key or Access Token

403 - Forbidden AP99 Access not allowed to the requested resource

429 - Too Many
Requests AP99 Rate limiting threshold Reached due to too many requests

within a limited time frame

500 - Server Error (Multiple) External gateway error

501 - Business Logic
Validation BV## Data provided conflicts with business logic validation

rules

502 - Bad Gateway IS##
AP99 Internal system error

503 - Service
Unavailable AP99 The service you are calling is currently unavailable

504 - Gateway Timeout AP99 The service you are calling was not able to respond within
the timeout window

Detailed Error Codes

External System Errors

137

Errors that occur when Wpay is interacting with external systems will be prefixed with ES.

Errors that occur when the data Wpay is receiving from you violates business validations are prefixed with BV and

where bad input data is found they are prefixed with BI.

Error Code Error Description

ES36 External Gateway Timeout

ES52 Payment Transaction Declined

ES53 Technical Failure

ES91 Card Issuer Unavailable

ES94 Duplicate Transaction

ES105 Payment Instrument Expired

ES112 Invalid Transaction

ES120 Invalid Gift Card Details

ES122 Amount Is Greater Than Preauth Amount

ES130 Not Supported By Merchant

ES151 Insufficient Funds

ES470 Account Locked Or Closed

ES611 Problem Retrieving The Gift Card Balance

ES3000 Processor Network Unavailable

Business Validation/Bad Input Errors

Error Code Error Description

BV57 Illegal Step Up Token Found

BV58 Expired Step Up Token Found

BV59 Step Up Token Required

BI02 Invalid Account Or Password

BI08 Invalid Data Found In Request

BI18 Unsupported Transaction Type

BI19 Mandatory Field Value Not Found

BI22 Invalid Field Value Found

BI24 No Matching Record Found

BI33 Transaction Type Not Found

BI34 Unsupported Fraud Version

BI55 Original Payment Transaction Not Found

Token & Merchant Data Errors

138

Errors that occur when invalid token or merchant configuration data is found are prefixed with AP

UN99 is used where an error has not been mapped to a specific code or where an unknown error has occurred.

Please see the error details for further information.

3DS specific errors

Error Code Error Description

AP01 Invalid API Key or API Product Match Not Found

AP02 Invalid or Expired Access Token

AP04 Merchant Configuration Not Found

AP05 Invalid User Linked to Access Token

AP99 Unknown Error

Catch All Error Code

Error Code Error Description

UN99 Unknown / Unmapped Error

3DS Error Codes

errorCode message

3DS_001 3DS Token Required

3DS_002 Invalid session

3DS_003 3DS Validation Failed

3DS_004 Unsupported 3DS Version

3DS_005 3DS Service Unavailable

3DS_006 3DS Authentication Failed

3DS_007 3DS Validation Timeout

3DS_100 Merchant does not support 3DS

3DS_500 3DS Unknown Error

139

